
D-Ai86 422 AFL-i: A PROGRAMMING LANGUAGE FOR MASSIVELY CONCURRENT 1/2
COMPUTERS(U) MASSACHUSETTS INST OF TECH CAMBRIDGE
ARTIFICIAL INTELLIGENCE LAB G BLELLOCH NOV 86

UNCLASSIFIED I-TR-9 N@14-85--8i24F/G 12/5 NL

EhEEEEEEEEEmhE
EhEEEEEEEEohhE

11.81 1.1W

11111.25 111111.L 11.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

MENEM

-..

~N

(D Technical Report 918

AFL1:
'A Programming

Language for
oMassively

Concurrent
Computers

DTIC

28Guy Blelloc

MIT Artificial Intelligence Laboratory

Approved fo public releaaol
Distribution Unlimited . 7

0 4• " " " ".-,,"41,. '-" ". ". ' ' " ... _ .. , ," .''. .. .' t.". . ,''. " - .' '

UNCLASSIFIED
SECjailV C *ASS-C, AI Or '-I PAGE '*%on. Dole EM101ed)

REPOT DCUMETATON PGE EAD INSTRUCTIONS
REPOT DCUMNTATON AGEBEFORE COMPLETING FORM

I REPRT NUASEQ2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG N1UMDER

a TILE (nd w~filo)S. TYPE or REPORT a PaRoO0 COVERED

AFL-1: A Programming Language for Technical Report
Massively Concurrent Computers G. PERFORMING one. REPORT wUgMOC

7. AUT04OR(e. a. CONTACT OR GRANT NlUMUefJ

Guy E. Blelloch N00014-85-K-O1 24

9. PERFORMING ORGANIZATION NAME ANC LDORSS 10. PROGRAM ELEMNT. PROJECT. TASK

Artificial Intelligence Laboratory ARCA aWORKUWRIT "U"Oem

545 Technology Square
Cambridge, MA 02139

11. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT DATE

Advanced Research Projeczts Agency November 1986
1400 Wilson Blvd. Is. IpTIum or PAGES

Arlington, VA 22209 "

14 MONITORING AGENCY NAMES4 AOORESS(Of EI,ifrnt Imn CeoiftI1 Ote")e. II. SECURITY CLASS. lot tme rop~w,

Office of Naval Research UNCLASSIFIED
Information Systems _______________

Arlington, VA 22217 154. @C-ASSIICAIuNI OWNMAOIIWG

IS. OISTRIOUION STATEMENOT feE ofts Nepeot)

Distribution is unlimited.

17. OISTRISIUTION STATEMN1T (of e. 061m @1111. OnD So . Dit l bhm *jeV=

1S. SUPPLEMENTARY MOTIES

None

19. Key WORDS (CW.ffUM an VI. @Id of 00e..eiOW nd"ufOr or m ea)

Programming Languages, Massively Parallel Systems, Connectionist Networks,

Activity Flow, Connection Machine, Rule Based Systems.

30. ADST MACY (Cietwoo a n rewu, d. It **I.. md #~Vp *I"& on*"e

Computational models are arising in which programs are constructed by

specifying large networks of very simple computational devices. Although
such models can potentially make use of a massive amount of concurrency,
their usefulness as a programming model for the design of complex systems
will ultimately be decided by the ease in which such networks can be
programmed (constructed). This report outlines a language for specifying
computational networks. The language (AFL-1) consists of a set of primitives,

DD I i ,* 'AT) 1473 COITION OF I NOV 111 IS OSSOLETEt UNCLASSI F IED
SECURITY CLASSIFICATION OP ?MIS PAGE (WI6 0690 towev

Block 20 Continued

and a mechanism to group these elements into higher level structures.
An implementation of this language runs on the Thinking Machines Corporation,
Connection Machine. Two significant examples were programmed in the language,
an expert system (CIS), and a planning system (AFPLAN). These systemv are
explained and analyzed in terms of how they compare with similar systems
written in conventional languages.

r OTIG

YNSPECTEtD

Accesior. For
NTIS CPA&I

CT -VT,. 3

I j . .
~j J i. .. ; .J:

I

. ---

AFL-1:
A Programming Language for

Massively Concurrent Computers

Guy Blelloch

November 196

ABSTRACT

Computational model. are atrising in which programs are constructed by specifying

large networks of very simple computational devices. Although such models can poten-

tially make use of a massive amount of concurrency, their usefulnes as a programming

model for the design of complex systems will ultimately be decided by the ease in

which such networks can be programmed (constructed). This thesis outlines a lan-

guage for specifying computational networks. The language (AFL-1) consists of a set

of primitives, and a mechanism to group these elements into higher level structures. An

implementation of this language runs on the Thinking Machines Corporation, Connec-

tion Machine. Two significant examples were programmed in the language, an expert

system (CIS), and a planning system (AFPLAN). These systems are explained and

analysed in terms of how they compare with similar systems written in conventional

languages.

0Messcbusst Institute of Tedanology, 1IM

Revim edwrs of a tbees submitted to the Derment of ZlectircaI Eugineerixg &ad Computer

Science May 1996 is partial fulfilimeat of the requiremate for the degree of Madter of Science. This

report describes research doe at the Artifiial Intelligence Laboratory of the Massachusetts lastitue

of Techuology Support for the laboratory's artificial intelligence research in provided in pean by the

Advanced Research Projects Agency of the Department of Defease under Office of Naval Research

contract N00014-85-K.0124.

Contents

I Introduction 12
1.1 AFNs in a Nutshell................................... 13
1.2 An Example.. 14

1.3 Massively Concurrent Machines...........................18S

1.3.1 The Connection Machine...........................18S

1.3.2 Taking Advantage of SIMD.......................... 21

1.3.3 Implementation................................. 21

1.4 Thesis Organization 2

2 A Hierarchy of Network Model 24

2.1 Static and Dynamic Networks............................ 24

2.2 Static Networks (Message Complexity)....................... 26
2.3 FMS Networks (Tokens, Values or Logic States)................. 27

2.4 VPNs (Global Communications)........................... 26

3 AFL-1 2

3.1 Properties Of The Primitives............................. 30

3.2 AFL-1 Node.. 31
3.3 AFL-1 Links....................................... 33
3.4 Input And Output.................................... 33

3.5 The Aft-Step....................................... 34

3.6 The Activity Values................................... 34
3.7 Design Decisions..................................... 36

3.7.1 The Combining Functions. 36

3.7.2 Inhibitory and Excitatory Inputs 36

3.7.3 Analog Output................................. 36
3.7.4 Piecewise Linear................................ 37

3.8 Alternate Primitives................................... 37
3.8.1 Alternate Combining Functions....................... 37

3.8.2 Alternate Spreading Functions....................... 36

3.8.3 Bidirectional Links 36

3.8.4 Links That Learn................................ 38

3.8.5 Capacitance (State) 39

3

4 Node Groups 40

4.1 Defining Node Groups................................. 40

4.2 Referencing Nodes 42

4.3 Tangled Hierarchies. 44
4.4 For Variables 45

4.5 Predefined Groups 46

4.5.1 The Fan-In Groups (Or, And, Max, Min and Sum) 46

4.5.2 The Fan-Out Groups (Activate and Inhibit). 47

4.5.3 Mutual Interaction Groups (Mutual Inhibition and Excitation) .47

4.6 Libraries. 48

4.6.1 Semantic Networks 48

4.6.2 Natural Language. 49

4.6.3 Production System 50

4.6.4 Vision 50

4.7 Conclusion 51

5 CIS - A Production System 53

5.1 Antecedent Reasoning (Forward Chaining) 54

5.2 Communication With The Outside World. 55

5.3 Asking Questions. 58

5.4 Consequent Reasoning (Backward Chaining) 61

*5.5 Parameter Value Pairs. 63

5.6 Meta Rules - Rule Set Activation. 67

5.7 Objecta Anid Instances. 68

5.8 Variablesi. 71

5.9 Inexact Reasoning 73

5.10 Focus 76

5.10.1 The More the Better. 76

5.10.2 Related Set Activation 77

5.10.3 Strict Ordering. 77

5.10.4 Close to Answer 77

S.11 Explanation. 78

S.12 Discussion 78

5.12.1 Limitations 78

5. 12.2 Extensions. 79

5.12.3 The Maximum Numbers of Rules 79

4

J. %% %.%o

5.12.4 Concurrency. 8

5.12.5 Data Procedure Integration 82

5.12.6 Meta-Control 82
5.12.7 Inexact Reasoning 83

5.12.8 Timing. 83

6 AFPLAN - A Planning System 6
6.1 An Example. 8
6.2 The Afplan Node Groups. 88

6.2.1 State Node Group. 89

6.2.2 Operator Node Group 89

6.3 Selecting An Operator. 94
6.4 The Operator Cost Argument. 95

6.15 The Do List. 95
6.6 Constraints. 96

6.7 Network Required 98
6.8 Conclusion 98

T Mutually Exclusive Groups 99
7.1 Five Flavors Of Mutual Exclusion 100

7.1.1 TYPE 1: Winner Take All 101
1V ~ 7.1.2 TYPE 2: Winner-Take-All With Hysteresis 102

7.1.3 TYPE 3: Contrast Enhancement..................... 103
7.1.4 TYPE 4: Controlled Contrast Enhancement.............. 105

7.1.5 TYPE 5: Controlled Contrast Enhancement With Fatigue. .. . 106

7.1.6 Implementing Large ME-Groups..................... 107

7.2 Uses Of ME-Groups.................................. 109

7.2.1 Output Serialization............................. 109

7.2.2 Internal Selection (Interpretation) 109

7.2.3 Internal Serialization (Attention). 110

7.2.4 Registers And Buffers....
7.3 Problems With ME-Groups...

8 Implementation 112
8.1 The Connection Machine 112

8.2 Simple Conceptual Implementation. 113

8.3 AFL-1 Run Time Implementation 114

A11 'I S11 i 1

8.3.1 Virtual Processors 115

8.3.2 Scan Operations. 115

8.3.3 The Implementation 116

8.4 Taking Advantage of Inactivity 119
8.5 Counting Links or Nodes 120

8.6 Improvements to the Hardware 122

9 Conclusion 124

Bibliography 125

6

WIN

List of Figures

1.1 The Function of an AFL- Nede 14
1.2 Three Animal Rules 15

1.3 An Example Network for Three Rules 16
1.4 The Parameter and Rule Groups 17
1.5 The Definition of the Parameter and Rule Groups 17
1.6 Block Diagram of Connection Machine 20

1.7 Levels of Systems Discussed in this Thesis 22

2.1 A Taxonomy of Concurrent Network Models 25
2.2 Example Network for NETL 26

3.1 The Functions Performed by an AFN 30
3.2 The AFL-1 Node 32
3.3 A Simple AFL-1 Network 34

3.4 The AFL-1 Activity Set 35

4.1 The Node Group Hierarchy of the Ship Example 42
4.2 Example of a Tangled Hierarchy: A-Ship-At-Dock 44
4.3 Possible Hierarchiw for the Room Example 52

5.1 The Network Generated by Four Animal Rules 56
5.2 The Definition of the Simple-Parameter and Antecedent-Rule NG... . 57
5.3 The Zebra Instance of the Simple-Parameter NG Including I/O and

Question Asking 58
5.4 The Definition of the Simple-Parameter NG Including I/O and Question

Asking 59
5.5 The Interface Between the AFN and the User 60
5.6 The Network Generated by A Consequent Animal Rule 62
5.7 The Definition of the Consequent-Rule Node Group 63
5.8 The Covering Instance of the Parameter NG 65
5.9 The Definition of the Value and New-Parameter Node Groups66
5.10 The Meta-Rule Node Group 67
5.11 The Network Created by the Tetanus Meta-Rule. In the diagram the

dashed groups signify that not all the nodes in those groups are shown. 68

7

KS

5.12 The Object Hierarchy of Mycin Davis77 69

5.13 Example of Cross Instance Rule 72

5.14 The Hierarchy of Node Groups in CIS 73

5.15 Inexact Beach-Bum Rule 74

5.16 The Value and Consequent-Rule NGs for Inexact Reasoning 75

5.17 Two Types of Forward Chaining Concurrency 81

6.1 State and Operator Definitions for the Blocks World 86

6.2 The "Anomalous Situation" in the Blocks World 86

6.3 The Part of the AFN Activated by the Anomalous Situation.

Dark circles show the active states, and dashed lines show preconditions

that get deleted (deactivated) if the operator they are linked to is applied. 87

6.4 The Active Part of the AFN After Moving C onto the Ground..... 88

6.5 The Network of an Instance of the State Node Group 89

6.6 The Definition of the State Node Group 90

6.7 The Network of an Instance of the Operator Node Group 91

6.8 The Definition of the Operator Node Group (Continued in Next Figure). 92

* 6.9 The Definition of the Operator Node Group (Continued from Last Fig-

ure) ... 93
6.10 Taking the Better Step 94
6.11 The Side-Stepping Blocks Problem 96
6.12 The Double Side-Stepping Blocks Problem 97

7.1 An Example of a Mutually Exclusive Group 100

7.2 Implementation of a Two Member Type 1 ME-Group 101

7.3 Implementation of a Two Member Type 2 ME-Group 103

7.4 Implementation of a Two Member Type 3 ME-Group 104

7.5 Graph of the Contrast Enhancement of a Type-3 ME-Group105

7.6 Implementation of a Two Member Type 4 ME-Group 106

7.7 Implementation of Large ME-groups 108

7.8 The Mechanism of Internal Serialization 110

8.1 An Example Layout for the Simple Implementation of AFNs on the

Connection Machine 115

8.2 Example of Scan Using Sum 116

8.3 The Scan Functions Used By AFL-1 117

8.4 Node and Link Layout on the Processors 117

8

8.3 Running Time of an Afi-Step for Various V'P Ratios............. 118
8.6 Example of Pack Operation 119
8.7 Packing on Chip to the Lower VP Rows. 120
8.8 A Fat-Tree [Leiserson85 122

9

List of Tables

1.1 Classification of Concurrent Computer Architectures 19

8.1 Approximate Number of LIPS for Various Computers 113

8.2 Relative Running Times for Various CM Functions 113

SI

10

"mamma

Acknowledgments:

I am grateful to Phil Agre and Dave Waltz for many helpful comments and much

encouragement. Phil introduced me to the Connection Machine and helped guide much

of this research.

I thank Dave Chapman, Tom Knight, John Taft and Dan Weld for looking over

various parts of the thesis.

Alan Bawden, Jerry Roylance and Ramin Zabih helped me organize a presentation

from which the introduction was derived.

Tom Knight, my advisor, kept me on the practical aspects of the research and

guided me away from the slush. Charles Leiserson taught me what I know about

computational theory.

I would also like to thank Danny Hillis, Brewster Kahle, Cliff Lasser, Steve Omo-

hundro, Abhiram Ranade and Guy Steele for their help at Thinking Machines.

do-4.

a.'u

m.!

.. ,2

L1 ,

i...

Chapter 1

Introduction

In recent years there has been much interest in developing computational models for

massively concurrent computers. This interest has been motivated by the realization

that making effective use of the processing potential available on a thousand or million

processor machine is not a trivial problem. Small changes to conventional languages are

adequate for the adaptation of highly homogeneous tasks, such as matrix multiplication,

but such small changes will not suffice for more general tasks in which communication

is not homogeneous and different tasks must run concurrently. In order to implement

these tasks, several new programming models have been suggested.

One approach has been to extend conventional symbolic languages such as LISP

to include primitives for forking off new processes (nodes in the process graph) and

r. communicating among the nodes Bawden84, Hewitt83]. In these models, each node

and each message is complex. An alternative approach has been to use very fine grained

models that have simple nodes, perhaps on the order of logic gates, and send very

simple messages. Computations in such models are mostly specified by the connections

among the nodes rather than by the computation done at the nodes. This approach

can be traced back to McCulloch and Pitts Threshold Logic Elements j19491 and has

had a recent resurgence dubbed as "Connectionist Models" [Hinton8l, Feldman82,

Rumelhart861. The fine grained models depart more significantly from conventional

languages and go further toward accessing concurrency at its roots - at the circuit

level.

Although the fine grained models are appealing in many ways, for large applications

they suffer three related drawbacks: little work has been done on developing methods to

program within the models; the primitives seem too simple to be useful for programming

large tasks; and the abstractions supplied by the models differ substantially from those

programmers have been raised on, making the models more difficult to work with. This

thesis addresses the first two problems by defining a language, AFL-I, for programming

the networks and showing how the language allows the user to abstract away from the

primitives. The third problem can only be solved with time and experience. To show

that it is easy to program in AFL-I, two relatively large tasks were implemented: a

production system (CIS) and a planning system (AFPLAN).

12

%

To define a language, the thesis first formalizes the notion of "fine grained models

with simple nodes" by defining a particular type of network model - the activity flow

network (AFN) model. The networks AFL-I creates belong to this class. AFL-I consists

of functions to add nodes and links to a network and a mechanism that allows the user
to hierarchically define structure out of these nodes and links. The structure defining
mechanism resembles the mechanisms found in some constraint languages [Steele8O,

Sussman80] and circuit design languages [Batali80].
Although the primitives of AFL-1 are indeed quite simple - no more complex than

machine instructions of conventional machines - they are defined independently of any
given machine and are therefore - unlike the machine instructions of conventional ma-
chines - portable. This machine independence along with the abstraction mechanism

makes it possible to program large portable tasks using AFL-1.
Since the modules created in AFL-1 are active networks of integrated code and data

rather than blocks of serial code or structures of static data, many of the abstractions
and intuitions that have become embedded in the way we think about computation are
not useful in the AFN model. For example, the idea of building up complex symbolic
structures and manipulating them is not supported by AFNs. This thesis develops
some abstractions that are suitable for the AFN model and includes them in the AFL-

1 language. One such abstraction is the mutually exclusive group discussed in chapter 7.
At present, the AFL-1 support of high level abstractions is weak, but the author hopes
that through future development, an environment can be created in which the users

can completely remove themselves from the primitives.
To keep the thesis within bounds, the sort of fine grained networks considered is

kept simple. In particular the thesis makes the following three restrictions on the

networks: a) it does not consider networks that learn, b) it only considers local views
in whi'_h every node is given a name rather than distributed views such as in [Hinton81,
TouretzkyS5], and c) only considers completely static networks.

The remainder of this chapter gives a short description of activity flow networks,

shows an example of how to compute with such networks and program with AFL-1,
gives some background on massively concurrent computers, and finally gives a guide to
the rest of the thesis.

1.1 AFNs in a Nutshell

An AFN is a static network of simple nodes and links, that:

e only passes unsigned finite approximations of real numbers over its links;

13

9l
(~d,.~.sW/fl~?§V\~ ~'Vi

-- Saturation
ZSk

OUIUT

lbreshold
(EXCITATORY INPUT - INHIBITORY INPUT)

Figure 1.1: The Function of an AFL-1 Node.

" is controlled by a global clock;

" can only communicate to the external world through a set of input and output

nodes.

The particular AFN model used by AFL-1 consists of five types of nodes - input.

output, max, min and sum; and two types of links - inhibitory and excitatory.

Nodes can have an arbitrary number of inputs and outputs and have four parameters

associated with them - a threshold, a slope, a rise and a saturation. The inputs to a

node are divided into two types - those from inhibitory links and those from excitatory

links. A node combines each input type using maximum, minimum or sum (according

to the nodes flavor). Figure 1.1 shows the function applied to these results to get the

node's output.

The link makes a directional connection between two nodes. Each link has a weight

associated with it. Links multiply their input by their weight and pass this value to

their output. The clock is used to synchronize all the nodes after each node sends its

message through its output and receives a new message.

1.2 An Example

To give an idea of how one computes with AFNs and how one programs with AFL-],

this section goes through a trivial example. This example is a small subset of the CIS

system discussed in chapter 5. To simplify the discussion we will assume that there are

only two activity values in the system - inactive (0) and active (1). We will also ignore

the issues of input to and output from the network.

14

(make-rule rule-1 (make-rule rule-2
(if has-hair) (if gives-milk)
(then is-samal)) (then is-mammal))

(make-rule rule-3
(if Is-mammal has-hooves)
(then is-%agulato))

Figure 1.2: Three Animal Rules.

The purpose of the AFL-l language is to build network structure at compile time

that can be used to execute some function at run time. To implement a rule based sys-

tem with such a language one wants a way to translate a set or rules about parameters

in the world into a network that can make inferences according to these rules.

To do this, one can make each rule, and each parameter that the rules relate, a

collection of nodes and links in the AFN. The rules shown in figure 1.2 might compile

into the network shown in figure 1.3.

In this network, if the asserted node of a parameter is active it signifies that the

corresponding parameter is true. Each asserted node takes the Or of its inputs since

Max acts as Or for a two valued logic, and each active node takes the And of its

inputs since Min acts as And for a two valued logic. Because of this, the activation of

either the has-hair asserted or the gives-milk asserted node will activate the is-
mammal asserted node. Likewise, the activation of both the is-mammal asserted

and the has-hooves asserted nodes will activate the Is-ungulate asserted node.

We assume the gives-milk, has-hair and has-hooves asserted nodes are activated

either through other rules or from input nodes.

The system uses the want-to-know nodes for goal directed reasoning. In goal

directed reasoning if the system wants to know the value of a parameter, it traces back

through the rules from the then-part to the If-parts. The backward links in figure 1.3

have this effect. For example, if has-hooves is not known, then the want-to-know

node of Is-ungulate will activate the want-to-know node of has-hooves.

To get from the rules defined in figure 1.2 to the network shown in figure 1.3 one

can define a generic rule structure as shown in figure 1.4A and a generic parameter

structure as shown in figure 1.4B. These structures can be instantiated once for each

rule and parameter in the rule set. AFL-1 calls these generic structures groups and

supplies the defgroup form for defining them. Figure 1.5 shows what the definitions

of the parameter and rule groups might look like.

15

11 VVII 1 IN K WI S-MII K

7 W,%NI -*1 %.,
N%SI R 11-1) I O.K OW ASSI Kill.) *11110hst 10 K%OW
mnix-nigk Mi-nkX max-najdc max-iwadc

palramcicr Sru parincr up

IL F- IF

WANT- WAN I-
%C1IVIF 10-KNOW ACI IVE 10-KNOW

m-de mamide min-node MiAmadeW

r rop

NSI-I-1 ini a* S I0-40 WAhuI TOKNO

m~~x-noii m.1nueAmwSSFTD'ne" 0KO

awnd 3ftI

4a a l r g o a m ~ e o

RUE-

Figre .3:AnExapleNewrAorTre uI

16TE TOKO

WANT- WANT-
AC'IIE Vi *O.KNOW ASSI* IN) *ihh(10 K NOW
mm-nhode MIzwd max-node MaX-nusjc

Par~mtrpu

rule Iruup

Figure 1.4: The Parameter and Rule Groups.

(dot group parameter 0)
(make-max-node 'asserted)
(make-max-node 'want-to-know)
(make-inhibitory-link 'asserted 'want-to-know))

(defgroup rule (if-parts then-parts)
(make-min-node 'active)
(make-max-node 'want-to-know)
(dolist (if-part If-parts)
(make-excitatory-link '(< if-part asserted) 'active)
(make-excitatory-link 'want-to-know '(< If-part want-to-know)))

(dolist (then-part then-parts)
(make-excitatory-link '(< then-part want-to-know) 'want-to-know)

(make-excitatory-link 'active '(< thlef-part asserted))

Figure 1.5: The Definition of the Parameter and Rule Groups.

17

w MS.H

"amal

Al though not ho\ n in the example. the defin it ion of a group(dn In(l ud anot her

group %%ithii it. This allows a hierarchical definition of complex groups

1.3 Massively Concurrent Machines

Researchers ha'e proposed many concurrent computer architectures each of which is

more appropriate for implementing some models of concurrent computation than oth-

- ers. Two important aspects of these architectures are the granularity of the processors,

and the interconnection scheme among the processors. The granularit. %ill tell us

whether the architecture is single instruction multiple data (SIMD) or multiple in-

Iru~tton rrultiple data (MIMD) and whether it is best at double precition floating

point multiplies or manipulating a small number of bits The interconnection scheme

%I Il tell us how efficiently the architecture can simulate the connections used by var-

(,1s models. Table 1.1 classifies some of the existing concurrent architectures by their

granularity and interconnection scheme.

SActi' it. flow networks are well suited for fine grained architectures with a general

i 'rconnection scheme. They are well suited for a general connection scheme because

the. make no restrictions on the connections among nodes. TheN are well suited for

fine grained architectures because the nodes only manipulate small numbers of bits and

networks consist of a large number of nodes. The only existing architecture that is fine

grained and has a general connection scheme is the Connection Machine (CM). The

functions executed by the nodes of an AFNs are actually significantly simpler than.1

what the CM processors are capable of executing, so an even finer grained machine

might be better suited.

1.3.1 The Connection Machine

-igure 1.6 shows the schematic block diagram of the existing Thinking Machines Cor-

poration. Connection Machine. This machine has 2"6 processors. Each processor is bit
serial and has on the order of 10' bits of local memory. The machine only has a single

instruction trearni that is broadcast from the microcontroller. The router of the CM
allO'A% anN processor to send a message to an) other p-ocessor. A message can either

he .ent b\ haling the address of the other processor and dynamically routing it. or

" bY 'ettig p a static path to the nther procesor at compile time. A ho:st mahine

% (ontrols tht.c onnection machine ('urrentl. a Svmbolics 3600 is used as the host

This thesis !, motivated hN the existence of a CM and b) related riachines being

designed %\ithout a Connection Machine, running networks created h. AFL- I would

,,

, . .. o . , o , • . - . * *-- '* - - . ' * * ° % " . % - % % -- -_' q " . " . " * ". • * % --° % " % • " • ° % *, r . o= =_. .". . . . •." ,r,, .".".'." .' ',,*44 " • ,€ °54 e d "€ " " ". . . - " = L L*" *= *€ _° " '

____ ____ ___ ____ ____ ___Granularity

Fine Grain (SIMD) Medium Grain Coarse Grain

(104 - 10W procs) (0 104 procs) (< 102 proc.)

Connection Machine 'Hill isS51, Dado [Stolfo831 1 ~mpSiew.*ore781;'

MPP BatchergOi Ultracomputer [Gottlieb83 Illiac-1V [Bouknight72,!

Staran 'Batcher74' BBN-Butterfly 7Crowther85j S- I Farmwald841

I GAPP 'Davis84' PEPE !Thurber76' HEP rSmith84J1

Cm' [Siewiorek7g8
______________________ Non-Von ShaW85' __________

Connection Scheme

General Barrel Shift Tree Grid

High Bandwidth Low Bandwidth

Connection Macine Cm* Staran Dado, MPP

Ultracomputer Non-Von 1lliac-1V

BBN-Butterfly IGAPP

V. ~~~~~S-1 _____________

Table 1.1: Classification of Concurrent Computer Architectures.

S 19

MMORY ROCNMLE

00

E=5 R RIV

be impractical.

1.3.2 Taking Advantage of SIMD

Every processor in the CM has a context flag and each processor only listens to the
instruction stream if its context flag is set. Using this flag it is possible for the CM
to simulate a multiple instruction multiple data (MIMD) machine by serially cycling
through all the instructions needed by different types of processors. This cycling is
called time multiplexing the instruction stream.

For example if there are two types of processors in the machine, type A and type
B, then the instruction unit can broadcast the instructions for the type A processors
while the type B processors sit idle and then broadcast the instructions for the type B

processors while the type A processor sit idle.
Instruction multiplexing is useful but costs time proportional to the number of

processor types. By having a model with a minimal set of primitive elements, the
idle time of the processors can be kept low. Since AFL-1 only creates a few primitive
elements, little time is wasted multiplexing the instruction stream. In fact, since the
majority of the time is taken sending messages and all the primitives can send their
output values together, alrios" no time is wasted multiplexing the instruction stream.

1.3.3 Implementation

The implementation of AFNs on the CM uses a separate processor for each link as well
as each node. Because of this, when evaluating the size of a network, the links should

be counted as well as the nodes.
It is desirable not to have machine dependent restrictions on the size of a network.

On the CM, the implementation can include more links and nodes than processors by
placing multiple virtual processors (VPs) on each physical processor. By doing this it
is reasonable to implement networks with several million links. The time taken by each
step of the network goes up slightly more than linearly with the number of VPs per
processor.

On the 64K CM when running a network with a million links (16 VPs/proc), a step
of the AFN takes about 15 mili-seconds. Chapter 8 explains the implementation.

1.4 Thesis Organization

There are several system levels discussed in this thesis. An attempt was made to make a
clean separation among the implementations of these systems. This section outlines the

21

- -,. -J 1

()pcralor It ile Sets
I finiioi ni

AFPI-N cisK EY

I cfined by

tbcllsis

Ixisting

Systems

Abstract

0 Model

Lisp Algorithm Ftr

Work

Figure 1.7: Levels of Systems Discussed in this Thesis.

22

i%

systems and gives pointers to the sections or chapters where the systems are discussed.

Figure 1.7 shows how the systems fit together.

The Connection Machine architecture was outlined in section 1.3.1. A more com-

plete description can be found in Christman84, Hillis85 . The CM uses a Symbolics

3600 as a host Symbolics85). All the software is implemented as an extension to

Symbolics Common Lisp !Steele84, Symbolics85]. StarLisp is a language developed at

Thinking Machines Corporation for programming the connection machine ILasser86].

The static network algorithm is an algorithm developed for running static networks

such as logic simulators, circuit simulators or NETL [Fahlman79 like systems on the

CM. Static networks are discussed in section 2.1. The algorithm is discussed in sec-

tion 8.3.

The activity flow network model is a particular static network model. The AFN

model was outlined in section 1.1. How the model relates to other network models of

computation is discussed in chapter 2.

AFL-1 is a language for creating AFNs. It is an extension of the Symbolics Lisp

environment and StarLisp and uses the static network algorithm on the CM to run the

networks it creates. The language is discussed in chapters 3, 4 and 7.

To show how to program with AFL-1. two significantly large tasks were imple-

mented with the language. Chapter 5 describes the concurrent inference system (CIS),

a production system and Chapter 6 describes AFPLAN, a planning system. On top

of these systems one can implement rule sets or planning worlds for a particular do-

main. This thesis only gives small examples of such rule sets or planning worlds. These

examples are included in the discussion of the systems.

_ V

23

S ..- %
A&*, Z1%

.Chapter 2

A Hierarchy of Network Models

To show how activity flow networks (AFNs) relate to other models of computation,

this chapter outlines a hierarchy of network models of concurrent computation. As

Fahiman noted IFahlman83', a good way to categorize such models is by the complexity

and content of the messages. Such a measure is useful because it indicates much about

the model in general, such as the complexity of the nodes and the efficiency of the

implementation.

Figure 2.1 shows a hierarchy of models categorized by their messages. Like any

categorization, the boundaries between the models are not perfectly sharp - many

models slip in between the categories. This chapter starts at the top of this hierarchy

and works down to the activity flow model. Branches that lead to activity flow networks

are explored in more detail than other branches.

2.1 Static and Dynamic Networks

The class of all network models of concurrent computation can be broken into two

subclasses: static and dynamic networks. In a static network each node communicates

with a fixed set of other nodes, while in a dynamic network each node can dynamically

choose what other nodes it wants to talk to.

In practice static networks are compiled and loaded into the hardware that is going

to run them. Communications tend to be quicker on compiled static networks than on

dynamic networks for three reasons. First, algorithms can be used when the network is

compiled to place nodes that communicate with each other physically close so that long

distance links are minimized. Second, since the switches within the routing network are

*,1 only set once, much time can be spent determining good ways of utilizing the bandwidth

of the routing network. Third, no address has to be sent, and the routing-switches do

not have to be set dynamically. For examples, in logic simulators the address can be

much longer than the data and therefore if routed dynamically requires a large portion

of the routing time.

Dynamic network models include CL1 'Bawden84a], CGL Bawden84b 1 and Apiary

Hewitt83. These models all allow passing of pointers (connections in the case of CGL)

/~ 24

@4%

Network Models of
Concurrent Computation

Stauic Networks Dynamic Networks

State Networks Message Statec Networks

Finite Meuage Apiary CIA COL
State Networks

Value Passng Logic Token Passing
Networks Simulatous Networks

Wth Global Without Global NIFL
Communication Communication

11h1It.E BOULMANN Activity Flow
MACHINES Networks

AL-

Figure 2.1: A Taxonomy of Concurrent Network Models.

25

Is~ihcrIs- Fathcr

Georg JohnSam

Figure 2.2: Example Network for NETL.

that reference particular nodes, among the nodes in the process graph. They then allow

a node to communicate directly with any node it has a pointer or connection to. Such a

model requires dynamic routing since the set of nodes a particular node communicates

with dynamically changes over time.

All the dynamic networks the author knows about also allow dynamic consing of

new nodes in the process graph. Consing is the process of creating new nodes. The

CGL system computes almost entirely by splitting nodes into collections of nodes and

-'" merging pairs of nodes into a single node.

2.2 Static Networks (Message Complexity)

Static networks can be divided according to the complexity of their messages into
three groups: finite message state networks, node limited message state networks and

unlimited message state networks. Finite message state (FMS) networks only send one

of a finite set of states over the links. The size of this set of states must be independent

of the number of nodes in the network. Node limited message state (NLMS) networks

send messages with a number of states proportional to the number of nodes in the

network - this allows pointers to be passed. Unlimited message state (UMS) networks
can send arbitrarily complex messages.

Since the size of a message is a function of the number of states (the logarithm),

the FMS networks have fixed size messages. In practice the messages of an FMS tend

to be short. All FMS networks are static since for large networks they do not have

enough state in their message to encode pointers. Pointers grow with the number of

nodes in the network.

With NLMS networks it is possible to send pointers since the number of states of

the messages can grow with the size of the network. An example of a static NLMS

network, is the painted marker networks suggested in Fahlman81]. Although these

26

-qf. p

networks are static, they can send pointers (painted markers) among the nodes so that

each node can identify the original source of the message. This is useful in determining

whether two messages came from the same place. For example, in semantic networks

of the sort used in NETL [Fahlman79' pointers can be used to answer questions such as

"Find all persons who are their own father" for the network shown in figure 2.2. This

question can not be answered with FMS networks.

UMS networks do not exist in practice since it is hard to support unbounded message

lengths, but they might be of theoretical interest. The general definition of Data Flow

networks are UMS networks but in practice only finite fixed length messages are allowed.

The implementation of FMS networks is the easiest and most efficient. Since in FMS

networks the length of the messages are known, usually short, and equivalent across

the network it is very easy to route them. Also with FMS networks it is usually easy to

combine messages as they converge at a single node. Section 8.3 describes an algorithm

that can be used with minor changes on the Connection Machine to implement most

FMS networks.

2.3 FMS Networks (Tokens, Values or Logic States)

Within the class of finite message state (FMS) networks we can further categorize

the networks by the objects that the messages represent. Three categories are token

passing networks such as in [Collins75], [Fahlman791 and [Woods78], value passing

networks such as most of the connectionist models [Rosenblatt6l, Hinton8l, Feldman82,

Rumelhart86' and logic simulators such as [Denneau82]. Although the object that the

message represents does not make a great difference to the implementation, it affects

what the models are used for.

Token passing networks only pass tokens along the links. Each message consists of

a single token. The set of tokens (possible states of the message) have no order defined

over them. Value passing networks (VPNs) only pass finite approximation of the real

numbers over the links. Such representations could be as simple as a 4 bit integer or

as complex as double precision floating point numbers. They differ from token passing

networks in that there is an order defined over the possible states of the message.

Logic simulators pass logic levels over the links. The number of states this level can

have varies from simulator to simulator but typically consists of 2 through 8 states -
possibly 1, 0, Uninitialized, Float-High, Float-low, and Error. Switch level simulators

:Hayes821 and circuit level simulators ,Deutsch84j are also FMS networks.

27

W 11 ... * *

2.4 VPNs (Global Communications)

We can further categorize VPNs by whether they allow global communications. Global

communications include such things as taking a global OR of some value in all the

nodes and redistributing this value back to the nodes. Such global communications

allows for a secondary, often implicit, means for nodes to communicate.
In Thistle, a VP.N suggested by Fahlman '1983', global communications are used

heavily. For example, the host might put a value on all the human nodes and then

have those nodes send the value over their hair-color links. The system might then

take a global OR of the brown nodes to see if any brown-haired humans exist.

N. In contrast. activity flow networks (AFNs) do not allow any global communications.

The orlv global control in AFNs is a clock signal that allows the network to take a

step. Since the clock signal does not give a path from the nodes back to the controller,

it does does not allow for any communications among nodes. AFNs are also defined to

I," only send unsigned values (activities).

Many connectionist models are AFNs but some are not strictly AFNs because of

global control, such as those in Ackley85, Touretzky85', or because some messages are

not finite representations of real numbers, such as in 'Feldman82.

N

A'q 28

5d'..1%

i° , ",%

Chapter 3

AFL-1

AFL-I is an experimental programming environment in which one can construct, run,

- examine and debug Activity Flow Networks (AFNs). In large measure, AFL-l was

designed to investigate the plausibility of programming large AFNs, and to suggest

directions for future work in related languages. The AFL-1 programming environment

conceptually consists of two pieces of hardware, a host-machine, which is used to

construct, examine and debug AFNs, and a network-processor, which is used to run

the networks. The part of the environment concerned with constructing AFNs will

d henceforth be called the "AFL-1 language". This chapter and the next describe the

AFL-I language and chapter 8 describes the network-processor. The thesis includes

little discussion on examining and debugging networks.

As with conventional languages, the AFL-1 language supplies a set of primitives

and a mechanism to abstract away from these primitives. The primitives define an

abstract machine on which networks are built. The abstraction mechanism allows the

programmer to group the primitives so that networks can be more easily repeated,

debugged, examined and described. To capture common programming cliches, AFL-1

supplies a set of predefined abstractions, and includes libraries of application dependent

abstractions.

Previous languages, such as INSCON jSmall82], designed for constructing connec-

tionist style networks have only supplied forms for creating the primitive elements.

AFL-1 takes some ideas from these languages and some abstraction ideas from work on

constraints and circuit design [Sussman8l, SteeleSO, Batali80, to create an environment

for programming large AFNs.

This chapter gives a formal definition of the primitives and discusses why they were

selected. The outline given in section 1.1 is probably adequate for the first pass over

this thesis. In AFL-l, one builds levels of abstraction with node groups. A node

group defines a collection of primitives (nodes and links) that can be instantiated

within an AFN. Chapter 4 discusses node groups and how they are defined and used.

The AFL-1 environment is an extension to the Symbolics LISP environment and

currently uses as the network-processor either the Connection Machine or a simulator

running directly on a Lisp Machine. All the forms discussed in this chapter and most

29

% ,. .. % ... %. %.....-. . 5, * . .r, , .- , '%-, . % . ,. -' . -
.V11 4*,, ., 5 , . Jk~.~* ** 5 %

LINK FUNCI"ON

COMBINING
FNCnlN

LINK RINcfloP

Figure 3.1: The Functions Performed by an AFN.

*" of the forms discussed in chapter 4 are included in these implementations. Since the

AFL-1 environment is relatively large and is still changing, this thesis only introduces

the ideas of the language and is not meant as a manual.

* Although connectionist networks can potentially make use of a massive amount of

concurrency. their usefulness as a programming model for the design of complex systems
will ultimately be decided by the ease in which such networks can be programmed

(constructed).

3.1 Properties Of The Primitives

As with all languages, it is important that the AFL-1 primitives are cheap to implement

on the class of machines (network-processors) the language is intended for, but that

they do not depend on hardware which is specific to a single machine; and that the

primitives are useful for programming the types of applications the language is intended

for, but not designed for a particular application. The primitives should supply a clean

and portable interface between Activity Flow Programs and the machine they run on.

These considerations guided the design of the AFL-1 primitives.

To make the primitives intuitive, two types of elements are supplied, a node and a

link. The link element is an active element, not just a passive wire, and has a single

input and single output. The node is an active element and can have an arbitrary

number of inputs and outputs. One should note that functionally equivalent networks

can be constructed with a single type of element that only has two inputs and out-

puts. AFL-1 does not use a single element type since it seems that this would make

constructing networks less intuitive.

30

@4M

Given that the network is divided into nodes and links, the work done by the
network-processor on the Activity Flow Ne'vork can be divided into four parts (see

Figure 3.1):

* Combining function - combines the activities from many link elements into a

single activity and passes this activity to a node element.

* Internal node function - a function performed on the internal parameters of each
* node and the activity received from the combining function. The internal param-

eters are set at compile time.

e Spreading function - takes the result of the internal node function and spreads it
to all the output links of the node. This can be implemented on a fan-out tree.

@ Internal link function - a function of the internal parameters of a link and the

activity received from the spreading function. Link functions are usually simpler
than node functions.

Since the spreading and combining functions get executed more often than the node

and link functions, they should run faster.

The following 5 sections describe the primitives- in detail.

3.2 AFL-1 Nodes

Each node in AFL-I has two sets of inputs, an inhibitory-set and an excitatory-set, and
a single set of outputs. Each of these sets can have an arbitrary number of elements

(links). All that can be passed through an input or output is an activity value (defined
in section 3.6). There are three different types of nodes: max, min and sum. These
types only differ in the combining function performed on their input sets. Each node
has four parameters that are set when the node is created at compile time. These

parameters are the threshold (T), slope (S), rise (R), and saturation (Sat).
At run time all nodes are controlled by a global clock. On the clock signal they

perform the following routine in lock-step.

CASE Node-Type OF
Sum ivalue SUN(*xcitatory-inputs) - SUM(inhibitory-inputs)

Max : ivalue :* MAX(excitatory-inputs) - MAX(inhibitory-inputs)

Min : ivalue := MIN(excitatory-inputs) - MIN(inhibitory-inputs)
IF (ivalue < Threshold)

31

SA

1k) Di~m e(Nf

OALU

O[VALUE

* b) low"ma Naft Fumws

Figure 3.2: The AFL-1 Node.

THEN ovalue :a 0

ELSE ovalue := MIN((ivalue * Slope) *Rise. Saturation)

outputs :- COPY ovalue

The formal definitions of the operations <-- - , <MAX, MINV. SUM, COPY)

over the set of possible activity values, is given in section 3.6. The internal node

funiction, the part of the above routine that maps i1value to ovalue, is piecewise linear

* and is shown in figure 3.2.

To add a node primitive to the activity flow network, one of the functions make-

sum-node, make-win-node or make-max-node is used. These functions have the

following form.

(MAKE-SUN-NODE node-name koptional (threshold *active*)

(slope *nil*)

(rise *active*)

(saturation *saturation*))

32

4P~

The make-max-node and make-min-node functions require the same arguments.

Make-sum-node can be abbreviated with make-node.

3.3 AFL-1 Links

There are two kinds of links in AFNs, inhibitory and excitatory links. An inhibitory
link connects the output of one node to the inhibitory input of another node, and the

excitatory link, connects the output of one node to the excitatory input of another

node. Each link has a single input and output and a single parameter, its weight (W).

This parameter is set at compile time. At run time the links multiply their input by
their weight and output the result.

ovalue <- ivalue * WEIGHT

The make-excitatory-link and make-inhibitory-link functions add links to the

AFN.
'5

(MAKE-EXCITATORY-LINK froa-node to-node koptional (weight 1))
(MAKE-IrNISITORY-LINK from-node to-node &optional (weight 1))

3.4 Input And Output

In addition to sum, min and max nodes, AFL-I includes the input and output node

primitives. These nodes are connected to the "outside world" and are the 1/0 of an

activity flow network. The outside world is anything outside of the AFN that activates

input nodes and is affected by output nodes; for example, a terminal, a bank of sensors

or the motor controls for a robot.

In most programs discussed in this thesis, the Input and output nodes are con-

nected to an external serial computer which interprets the output nodes and sets the
input nodes: the serial computer acts as an interface between the user and the AFN.
Since the interaction with the user is necessarily sequential, the serial computer does,.

not act as a bottleneck for such communications.

The make-input-node and make-output-node functions add input and output

nodes to the AFN. The output node type uses the sum combining function.

(MAKE-INPUT-NODE node-name)

(MAKE-OUTPUT-NODE node-name &optional (Threshold *active*)

(Slope *nil*)

33

..-. *.F f - ... J,,. ...- I.j... ., .'...,,,,

*IN

5,] WOMATT

OLTF I

Figure 3.3: A Simple AFL-1 Network.

(Rise -active*)

-.5 (Saturation *saturation*))

Figure 3.3 shows a simple network of nodes and links.

3.5 The Aft-Step

Once the programmer c.-.ns:ructs an AFN out of the primitive elements, she runs the

network processor b% executing aft-steps. An aft-step consists of one cycle through

the four functions of the network-processor - the spreading function, the link func-

tion, the combining function and the node function. The step is used to synchronize

all the processors and serves as the basic time unit of the network-processor. The

implementation is free to execute each of the substeps asynchronously but at the end of

the whole step all the processors must have received all their inputs and have generated

a new output. A computation will consist of many aft-steps.

Chapter 9 discusses how the aft-step is implemented.

3.6 The Activity Values

.Although the activity values are best imagined as real numbered values, implementa-

tions require a finite representation. For efficiency, it is best if a low-precision fixed

point representation is used. With fixed point numbers. man) of the operations can be

(done -it eriall% In a single pass AF L-! use, unsigned fixed point numbers with 3 bits

- ,on each ,ide of the point to represent activities. The set of possible activity values will

,enceforth be called the "activity set" and is shown in figure 3.4.

All objects passed around in the AFN at run time. and all the parameters of

."the nodes and links set at compile time. belong to the activity-set. The operations

34

50, ~t * 11 11,1131

activity-set a (0. 1/8...... 61/8. 62/8. -saturation*)

The following elements are equivalent:

0 and *nil*

I and *active*

63/8 and *saturation*

Figure 3.4: The AFL-1 Activity Set.

(+,-, *,<, MAX, MIN, SUM, COPY) are closed over the set and are defined as fol-

lows.

The operation M±" adds two elements of the activity-set and returns the result.

If the addition overflows, the element *saturation* is returned. The operation "-"

subtracts two elements of the activity-set and returns the result. If the subtraction

underflows, the element *nil* is returned. The operation "*" does fixed point multipli-

cation on two elements of the activity-set. If the multiplication overflows, the element
saturation is returned. Since the multiplica:ion creates 6 bits below the point, the

lowest three bits are dropped.

The operations binary-min(A, B) and binary-max(A, B) for A and B elements

of the activity-set, return the lower and higher valued activity respectively. The relative

values are determined by regular fixed point ordering.

SUM(V1,V2 VN), MIN(VI,V2,...,VN), and MAX(V1,V2,...,VN) for all

V in the activity-set are defined as the value of the root of a binary tree which has the

elements Vi at the leaves, and where -, binary-min, and binary-max respectively are
applied at all the nodes. Since the the three operations -, binary-min, and binary-

max are associative and commutative, the three combining functions are invariant

under the construction of the fan tree.

The operation PLACES < -COPY(A), for A in the activity set, and for PLACES

a set of slots which can accept a single element of the activity set, takes the element A

and copies it into all the slots specified by PLACES.

The operation (A < B) is true if A appears before B in the activity-set, and is false

* otherwise.

35 A fl.

~~-:~- 32 1111 .i'W606mem. ~ V ~

3.7 Design Decisions

This section gives a short discussion of why the AFL-1 primitives where selected.

3.7.1 The Combining Functions

Like the Thistle Machine suggested by Fahlman [Fahlman82, Fahlman83', AFL-1 sup-

plies three combining functions, MIN, MAX and SUM. Each of these functions is

commutative, associative and and with fixed point numbers can be executed bit serially

in a single pass. This allows these functions to be implemented efficiently. The onlyV.,
• .other well known functions with these properties are bitwise AND and OR but since

these assume a bitwise representation, they are not included in AFL-1.

It is possible to implement the min and max nodes with just sum nodes but this

entails a significant cost. Since the min and max nodes are generally useful for pro-

gramming and cheap to imp ment directly, AFL-1 supplies them as primitives. Min

and max nodes can be used to efficiently implement Zadeh's rules of fuzzy reasoning

0 (see section 5.9), and they allow efficient implementations of Mutually-Exclusive groups

(see section 7.1.6). Min and max are cheap to implement on digital computers but

are not necessarily cheap to implement on analog computers.

A problem with the SUM combining function is that it will easily saturate with

large fan-ins.

Section 3.8 discusses some additional combining functions that might be reasonable

to add to AFL-1.

3.7.2 Inhibitory and Excitatory Inputs

To make the combining functions tree invariant (associative and commutative), but

to still allow inhibitory links, separate inputs have to be used for the inhibitory and

excitatory links. If a single set of inputs is used, and negative weights are allowed on

the links, the - operation is not associative. For example, for saturations of -63/8 and

63 8, the expression (60/8 -,- 30/18) - -60,8 is equal to 3/8 while 60/8 - (30,'8 - -60/'8)

is equal to 30/8. Since an arbitrarily large fan-in is allowed, no finite saturation would

solve this problem. If the combining functions are not tree invariant, the function of a

network depends on the order in which links are added to a node.

3.7.3 Analog Output

Many Neural Networks and Connectionist models use digital instead of analog outputs

McCulloch45, Rosenblatt62, Hinton85a: here analog is meant as a signal with more

36
'ad'

.

* K;K..--:,

than two levels. In these models, the spreading function manipulates digital values while

the internal link, combining and internal node functions manipulate analog values.

AFL-1 uses analog values (activities) throughout the network. The analog values al-
low more state to flow among the nodes in the network and have little implementational

cost.

3.7.4 Piecewise Linear

Because linear functions are cheap to implement and easy to interpret, all the functions
performed by AFL-1 are piecewise linear. On bit serial machines it requires significantly

less time to compute linear functions than exponential functions, or polynomial func-
tions of order greater than 1. It is also easier for a programmer to understand the effect
of the parameters Threshold, Slope, Rise, Saturation and Weight, than the coefficients

of a polynomial function.

Some researchers have suggested that the sigmoid function has good properties for
neural like elements [Rumelhart86]. It is possible to categorize the sigmoid function

by a set of parameters that approximate a Threshold, Slope and Saturation thus allow
an intuitive description. It is also possible to approximate a sigmoid function with a
set of linear segments. It would therefore be reasonable to use it instead of the current

function.

3.8 Alternate Primitives

This section gives a brief outline of several alternate primitives. None of these alternates

has been adequately studied so only guesses can be made on how useful they would be
for the programmer.

3.6.1 Alternate Combining Functions

With a multiplicative combining function one activity could linearly modulate another.

Such modulation can be used to implement controlled contrast-enhancement groups (see
section 7.1.4), and to inhibit and excite large subnetworks. Since communication is the

bottleneck on the current implementation on the Connection Machine, the addition of
a multiplicative combining function would not have a large effect on the running time.

On the more efficient hardware suggested in section 8.6, the addition of multiplication
would have a greater effect - it is not yet clear what the magnitude of the effect would

be.

37

so9

P P

A pair of combining functions that might be well suited for -reasoning with uncer-

tainty" are B- and B,. These operators are defined as follows:

(Ii B+ 12) = (- (1 - I1)(1 - 12))

(I1 B* 12) = (I1 * 12)

Where I1, 12 and the results are values between 0 and 1. These operators cost

approximately the same as a multiplication. It is hard to say without more experimen-

tation how useful they are.

3.8.2 Alternate Spreading Functions

Rather than spreading a copy of the output value, it might be reasonable to implement

a function that either decays as the fan-out gets bigger, or depends on the activity at

the other end of the link. Such a scheme has been suggested in 'Reggia85]. In Reggia's

model, the activity flowing out of a node is constant so that as the fan-out gets larger,

each element gets a smaller amount of the activity. He also suggests that the amount

of activity which each output gets should be proportional to the activity at the other

end of the link.

3.8.3 Bidirectional Links

Neural networks and connectionist models have used bidirectional links in two ways.

The first is in a strict manner which forces all the links to have equal weights in both

directions. With such a constraint, one can prove some important properties about the

stability of the networks rHopfield821. The second allows for the links to have different

weights in both directions and is used to get a mutually excitatory effect 'Feldman84,

Reggia85'.

In the first case it would be desirable to have bidirectional links as primitives. In the

second case a higher level construct make-bidirectional-link can be created out of
U? the primitive construct make-link. Little efficiency is gained by including a primitive

make-bidirectional-link.

Bidirectional links are often harder to program than unidirectional links because it

is hard to account for all the feedback effects.

3.8.4 Links That Learn

Many researchers have noted that static networks can learn by modifying the weights on

links between the nodes 'Rosenblatt58, Minsky78, Feldman82, Hinton85, Rumelhart85 i.

38

In these models there are two ways in which a link can decide to change its weight

parameters: purely from local information - the history of the activity of its neighbors

'Hinton85, Rumelhart861, or from some global stimulus - this stimulus usually signifies

punishment or reward [Rosenblatt58.

It would not be hard to extend the AFL-1 primitives to allow for modifications of

the weights, and for most methods it would be cheap to implement. This thesis does

not include links that learn since allowing the networks to learn would make the initial

study of a programming language too complex.

3.8.5 Capacitance (State)

The nodes in AFL-1 have no internal state (Capacitance). Once a node sends the

ovalue out of its output it has lost that value: the value calculation on the next clock

will not depend on it. In the applications AFL-I is designed for, this is not a problem

because it is easy to simulate capacitance by creating a link from a node back to itself.

*If capacitance is used in a major part of the network then it would be worthwhile

including capacitance in the primitives and allowing the user to specify the value of the

capacitance when defining the node.

"2

1

39

AM,-

Chapter 4

Node Groups

A node group (NG) defines an abstract collection of primitives. To create network
structure (nodes and links) from a node group, the node group is instantiated. The

relation between node groups and node group instances is analogous to the relation

between object types (flavors, classes) and object instances in object oriented languages

such as Smalltalk 'Goldberg83]. Unlike most object oriented languages, the definition of

NGs can include arguments and control code so the structure of each instance of a single

NG can differ substantially. The node groups therefore should not be thought of as
fixed static structures, although their instances should be. Node groups are instantiated

at compile time. At run time, the network-processor only sees the primitives.

Sections 4.1 through 4.3 discuss how to define and instantiate node groups, how

to reference elements in different instances, and how to create tangled hierarchies.

Section 4.5 discusses some generally useful groups that are predefined L, the AFL-1
environment, and section 4.6 discusses some libraries of more task specific groups.

By hierarchically defining NGs in terms of other NGs, one can b'uild large AFNs

with a modest amount of code.

4.1 Defining Node Groups

The defgroup form is used to define node groups. The syntax is the same as the

defun function of Common Lisp [Steele841.

(defgroup group-name argument-list krest body)

The argument-list can include the symbols &key, &optional and &rest with the

same semantics as in Common Lisp.

To instantiate a group, one appends the group name to "make-" and calls this

derived function along with an instance name and the NGs arguments.

The following example shows how node groups are defined and instantiated.

(defgroup mutually-inhibit (first-node second-node)
(make-inhibitory-link first-node second-node)
(make-inhibitory-link second-node first-node))

@p40

- **. -p.,~~
.- ~~~~~~~~~~~ %e% . .a .. ,.,. 2 ,% ,"," , ." , ,/. r, . ., ,. - .. .,., .. .,, ", ,.,, ,,, .. 'A

(defgroup position (object)
(cond ((ocean-bound object)

(make-node 'at-sea)
(make-node 'at-dock)
(make-mutually-inhibit 'dock-sea (get-node 'at-dock)

(get-node 'at-sea)))
((person object)
(make-node 'at-home)
(make-node 'at-work)
(make-mutually-inhibit 'home-work (get-node 'at-home)

(get-node 'at-work)))))

(defgroup speed ()
(make-node 'fast)
(make-node 'stopped)
(make-mutually-inhibit 'fast-stopped (get-node 'fast)

(get-node 'stopped)))

(defgroup ship ()
(make-position 'ship-position 'ocean-bound)
(make- speed 'ship- speed)
(make -mutually- inhibit 'dock-fast

(get-node "(ship-position at-dock))
(get-node '(ship-speed fast))))

(make-ship QE-Il)
(make-ship SS-FRANCE)

Although not particularly useful, this examples shows many interesting points about

node groups (NGs). Firstly, it shows how NGs can be nested. In the example, the
ship NG includes an instance of the position NG which includes an instance of the

mutually-inhibit NG - the hierarchy is show in figure 4.1. Secondly, it shows that
nodes can be created conditionally. Any Common Lisp code is allowed within a def-

group and can be used to direct the creation of nodes. The instances of the position
NG will differ depending on whether the instantiator is sea-bound or a person.

Thirdly, the example shows the use of smart data (data-procedure integration).

Each instance of the ship node group is a smart data structure - if at run time the

(QE-I ship-speed fast) node gets turned on somehow, the (QE-Il ship-position
at-dock) will get turned off due to the mutually-inhibit links between these two
nodes. Mutual exclusion is discussed further in chapter 7.

Fourthly, the example shows how open modules are used. Although instantiating
NGs creates modular structure, there are no restrictions on which instances can make

41

.~~~~~~ ~%

QE-II

(ship)
/ I\

/,. I\

Ship-Position Ship-Speed Dock-Fast

(position) (speed) (mutually-inhibit)
/ I I \

/ I \I I \

At-Sea At-Dock Dock-Sea Fast Slow Fast-Slow

(node) (node) (mutually- (node) (node) (mutually-inhibit)

inhibit)

Figure 4.1: The Node Group Hierarchy of the Ship Example.

links to which other instances. In the example, the instances of the ship NG makes links

to both position ar.d speed instances. This thesis call such modules open modules.

One might claim tha: since random links are allowed, debugging will be hard, but with
appropriate debugging tools this is usually not the case.

In AFL-1 no nodes or links are created until a "make-" command is called at top
level. In the example, the two make-ship commands will create all the necessary nodes

and links.

4.2 Referencing Nodes

For an NG instance to make a link to, or from, a node in another NG instance, it must

have a pointer to that node. There are basically two ways that an instance can get
such a pointer. The first is that the pointer can be passed in as an argument. In the

example, the mutually-inhibit NG instances get their pointers this way - first-node
and second-node are pointers to two nodes. The second way is to use the get-node

function. The get-node function takes as an argument a list of names (symbols) that
leads along the hierarchy to the node of concern, and get-node returns a pointer to
that node.

(GET-NODE node-name-list)

42

021 12

Get-node works as follows. The node-name-list must either be a symbol or a

list of symbols. If it is a symbol. then get-node will look for the node in the instance

in which it is called. If the node-name-list is a list. then get-node will go down
the list as it goes down levels of the hierarchy. In the ship example, the (get-node

(ship-speed fast)) call in the definition of the ship NG will search down through

the ship-speed instance for a fast instance. If the node-name-list begins with "<"

symbols, then get-node will go up a level of the hierarchy for every "<" it encounters.

Using this scheme, get-node can reference any node in a tree from any other node in

a tree.
When passing node references as arguments, it is usually best to pass pointers

rather than names since names refer to different nodes depending on where get-node

is applied.

For brevity, the two functions make-inhibitive-link-relative and make-excitatory-

Unk-relative are defined in AFL-1. The function

(MAKE-EXCITATORY-LINK-RELATIVE from-name to-nae)

is equivalent to

(MAKE-EXCITATORY-LINK (get-node from-name) (get-node to-name))

The abbreviations make-ir-link and make-er-link are also defined.
* It is sometimes desirable to reference a node from the root of the hierarchy rather

than from the current position. The function

(GET-NODE-ABSOLUTE node-name)

exists for this purpose. Absolute referencing is rarely used inside node group defi-

nitions but is often used by the programmer to study the network.

To reference a NG instance rather than an actual node get-vertex is used.
It is sometime desirable to have a list of all the nodes of a specific form. For example,

. in the ship world we might want a list of the pointers to all the (* ship-speed fast)

nodes, where * will match any symbol. The get-node-list function is used for this

purpose.

(GET-NODE-LIST name-matching-list)

The get-template-node-list function is used when only a fixed set of elements
need to be matched. An example of its use is:

43

O4

QE-II SSF-RAIiCE

(ship) (ship)

I A-Ship-At-Dock I

Ship-Position (or-group) Ship-Position

(position) / I (position)
I / I \I

At-Dock Result At-Dock

(node) (node) (nod*)

Figure 4.2: Example of a Tangled Hierarchy: A-Ship-At-Dock.

(GET-TEMPLATE-NODE-LIST '(*wild* ship-speed fast)

"(QE-II SS-FRANCE QUEEN-MARY))

This will return a list of pointers to three fast nodes.

4.3 Tangled Hierarchies

It is often useful to define a function over a collection (group) of already existing nodes.

These existing nodes might have been instantiated by several different node groups. For

example, in the ship world, it might be necessary to find if there are any ships at dock.

To do this, we require a node that becomes active when any of the nodes (* ship-

position at-dock) are true (* matches any ship in existence). The required node

would take an "or" of all the at-dock nodes. To do this an or groups is defined; a

diagram of part of the desired hierarchy including the or group is shown in figure 4.2.

To differentiate between nodes that will be created by instantiating a node group,

and nodes that can be referenced directly but that are not created by an instance -

as with the (* ship-position at-dock) nodes from the or group instance - AFL-1

separates member and internal nodes of a group. In the NGs defined in the previous

sections, all nodes were internal nodes. When an or group is instantiated over the

ships at dock, all the (* ship-position at-dock) nodes are member nodes of the new

group.

By having member nodes as well as internal nodes AFL-1 allows multiple hierarchies

(tangled hierarchies). Such tangled hierarchies add programming power and make

studying and debugging Activity Flow Networks easier since they allow the user to

44

view a set of member nodes from several contexts. The (QE-II ship-position at-

dock) node could be studied either from the QE-I1 context or from the a-ship-at-

dock context. The following two functions are used to include member nodes in the

definition of a node group.

(ADD-MEMBER name node-pointer)

(ADD-MEMBERS name list-of-node-pointers)

The add-member function adds a single member node and gives it the name
specified by the name argument. The add-members function creates a subgroup that

has the name specified in the argument, and places the elements given by list-of-node-

pointers in that subgroup. The elements are given the names member-, member-

2, ... , member-n. To define the mutually-inhibit group given in section 4.1 with
'p

member nodes, the add-member function could be used as follows.

(defgroup mutually-inhibit (first-member second-member)

(add-member 'first-member first-member)

(add-member 'second-member second-member)

*. (make-inhibitive-link first-member second-member)

(make-inhibitive-link second-member first-member))

To define the or group, the add-members function would be used since the number

of members can differ on each instantiation.

(defbroup or-group (member-list)

(add-members 'input member-list)

With these definitions, one references the first member of the dock-fast instance of
the mutually-inhibit NG with (QE-II dock-fast first-member) and references the

first member of the a-ship-at-dock instance of the or group with (a-ship-at-dock

input member-).

*4.4 For Variables

For-variables is a macro used to loop over sets of values that a variable can have. For

most purposes, the for-variables macro will expand as follows.

C.- 45

*Ink

Al

6

(for-variables ((x '(dog cat mouse))

(y '(north south east north)))
(C....))

(dolist (x '(dog cat mouse))
(dolist (y '(north south east north))
(....))

.... * Since there are no variables in AFL-1, this form is used quite often.

4.5 Predefined Groups

Several node groups are included in the AFL-1 environment. This section outlines

some of these NGs. The description of these groups introduces the types of groups

that might be useful.

4.5.1 The Fan-In Groups (Or, And, Max, Min and Sum)

Groups that take information from many nodes and supply it to a single node are called

fan-in groups. All the fan-in groups have an internal result node which receives the

information. The function:

*. (MAKE-OR-GROUP instance-name members

koptional (threshold *active*))

creates a group with the member nodes specified by the members argument, and an

internal node "result", which is activated when any of the member nodes are activated.

For example, the call

(MAKE-OR-GROUP 'a-ship-at-dock

(GET-NODE-LIST '(* ship-position at-dock)))

will create a node (a-ship-at-dock result), which will be active when one of the
nodes (* ship-position at-dock) is active. The or-group considers active to be the

activity-element *active* (8 8th), but by using the optional threshold argument. the

required activity can be changed to any element of the activity set. Max-nodes are
used to implement or-groups.

The other fan-in groups are similar to the or-group and have the following prop-
erties. The and-group will activate its result node if all of its member nodes have an

46

S

act ity ofat least the group' threshold. The sum-or-group use- stm-nodes in-te d

of max-nodes so that no single member of the group has to have an activity as high

as the group's threshold, but the sum of the activities must be. The sum-and-group
is like the sum-or-group but the threshold is linearly dependent on the number of
members. The max-group, min-group and sum-group simply set the result node
to the max, min and sum of their members.

4.5.2 The Fan-Out Groups (Activate and Inhibit)

Groups that take information from a single node and send it to many nodes are called

fan-out groups. All the fan-out groups have an internal source node which the infor-

mation is taken from. The function:

(MAKE-ACTIVATE-GROUP instance-name members &optional

(source-spec '(*active* *nil*
active *active*)))

creates a group with the member nodes specified by the members argument, and
an internal node "source", which if activated will send activity to all of the member

nodes of the group. For example, the call

(MAKE-ACTIVATE-GROUP 'put-all-ships-at-dock

(GET-NODE-LIST '(* ship-position at-dock)))

will create a node (put-all-ships-at-dock source), which if activated will activate

the nodes (* ship-position at-dock). The optional argument source-spec can be

used to change the activity sent to the member nodes as a function of the activity sent

to the source node. Max-nodes are used for the source.

The inhibit-group works in the same way except that it creates inhibitory instead

of excitatory links to the member nodes.

4.5.3 Mutual Interaction Groups (Mutual Inhibition and Excitation)

While the fan-in and fan-out groups are concerned with bringing information to or

spreading information from a single point, each member of a mutual-interaction group
interacts symmetrically with all the other members. This means that between every
pair of nodes in a group, there is at least one path in each direction along which

information can flow.

47

@ J

The nosi important of the mutual interaction groups are the mutuallN exclusive

groups (ME-groups). In ME-groups. if one member is activated the other members are
inhibited. There are two types of ME-groups currently available in AFL-1. a winner-
take-all group (WTA-group) and a contrast-enhancement group; Chapter 7 discusses

the function of these groups.

.1 (MAKE-WTA-GROUP instance-name members

&optional (hysteresis-threshold *nil*))

(MAKE-CONTRAST-ENHANCEMENT-GROUP instance-name members

contrast-factor)

There are three other mutual-interaction groups available in AFL-1, the mutually-

excitatory group, the lower-bound group and the upper-bound group. In a

mutually-excitatory group, the members excite each other. In a lower-bound

group, the average activity of all its members is kept above some lower bound. In a

*]upper-bound group, the average activity of all its members is kept below some upper

bound.

(MAKE-MUTUALLY-EXCITATORY-GROUP instance-name members

excitation-factor)

(MAKE-LOWER-BOUND-GROUP instance-name members

lower-bound)

(MAKE-UPPER-BOUND-GROUP instance-name members

upper-bound)

4.6 Libraries

As in conventional languages, node groups relevant to particular classes of applications

*.-r, can be collected into libraries. This section suggests some libraries that might be useful.

These libraries are only suggestions and are not meant in any way as an analysis of

whether the various functions can actually be implemented adequately on the static
networks created by AFL-1 nor as an adequate description of the systems discussed.

:. References are given to descriptions of the systems.

-4'.". 4.6.1 Semantic Networks

Several researchers have shown how semantic memories can be implemented on architec-

tures similar to Activity Flow Networks 'Collins75, Fahlman79, Hinton8lb, Shastri85 .

48

00 ,",-p. - . , . -, ,. - . - ' - . " '/,/ , . • q % l

P-.d, ' .. - . -- • . . .

4'.

The most complete of these is in ShastriS5 the following node groups might be used

to create semantic networks of the sort he suggests.

(MAKE-CONCEPT concept-name)

. (MAKE-PROPERTY property-name possible-values)

4. (MAKE-IS-A-LINK link-name parent-concept-name child-concept-name
,,.

weight)

(MAKE-PROPERTY-LINK link-name concept-name property-name value

value-weight concept-weight)

In this system concepts correspond to things such as dog, cat, and person,

properties correspond to things such as has-hair-color and eats, and the values as)

property has might be red, brown or orange.

4.6.2 Natural Language

Connectionist implementations of natural language interpreters are discussed in ,Sel-

man85, Waltz85, Cottrel1851 . AFL-1 cannot implement the system suggested in !Waltz85

since his system builds networks on the fly (dynamically). The systems suggested
in Selman85 and [Cottrel185I use static precompiled networks and can therefore be

,,- created using node groups. The following node groups might be used to create the

grammar rules for the syntax parser suggested in rCottrell851.

(MAKE-TOKEN-TYPE token-type-name)

(MAKE-CONSTITUENT constituent-name)

(MAKE-ROLE role-name possible-constituent-list)

(MAKE-GRAMMAR-RULE rule-name constituent-name role-list)

A set of grammar rules written with these groups might look as follows.

(MAKE-TOKEN-TYPE 'VERB)
(MAKE-TOKEN-TYPE 'NOUN)
(MAKE-TOKEN-TYPE 'PRONOUN)

(MAKE-CONSTITUENT 'sentence)
(MAKE-CONSTITUENT 'verb-phrase)
(MAKE-CONSTITUENT 'noun-phrase)

(MAKE-ROLE 'subject '(noun-phrase))
(MAKE-ROLE 'predicate '(verb-phrase))
(MAKE-ROLE 'main-verb '(VERB))

| I

r. --. 49

@ a.**@''* *a* .*. - -

~ -~x~cktc%'

(MAKE-ROLE 'direct-ob3ect '(noun-phrase))
(MAKE-ROLE 'indirect-object *(noun-phrase))

(MAKE-ROLE 'head '(NOUJ PRONOUN))

(MAKE-GRAMMAR-RULE 'simple-sentence 'sentence

'(predicate))
(MAKE-GRAMMAR-RULE 'subject-sentence 'sentence

9 '(subject predicate))

(MAKE-GRAMMAR-RULE 'simple-verb-phrase 'verb-phrase
S(K- ' (main-verb))

(MAKE-GRAMRAR-RULE 'complex-verb-phrase 'verb-phrase
'(main-verb indirect-object direct-object))

(MAKE-GRAMMAR-RULE 'simple-noun-phrase 'noun-phrase
'(head))

A library of natural language groups could also include groups to deal with lexical

and semantic constraints.

4.6.3 Production System

Chapter 5 discusses a production system implemented in AFL-1. The groups defined

in that chapter, along with several other rule groups, can be collected into a library.

Some of the groups of this library might be:

(MAKE-SIMPLE-PARAMETER parameter-name)

(MAKE-PARAMETER parameter-name values)

(MAKE-ANTECEDENT-RULE rule-name if-parts then-parts)

(MAKE-CONSEQUENT-RULE rule-name if-parts then-parts)

(MAKE-META-RULE rule-name if-parts then-parts)

4.6.4 Vision

There are several aspects of vision that can be abstracted into groups of nodes. Since

there is still debate on what the primitives of vision are, it is not obvious what the "base"

groups should be. A vision library could include groups based on several approaches.

Vision NGs based on rHinton85' might include:

(MAKE-INPUT-RETINA-PLANE instance-name height width)

(MAKE-FEATURE feature-name description)

(MAKE-RETINOTOPIC-PLANE instance-name input-plane

050

feature-list height width)

(MAKE-OBJECT-PLANE instance-name feature-list height width)

(MAKE-MAPPING-PLANE instance-name retinotopic-plane object-plane

feature-list)

(MAKE-LETTER letter-name description)

2>- (MAKE-LETTER-MAP instance-name object-plane letter-list)

4.7 Conclusion

To make programming large systems practical, a language must allow the user to di-

vide the system into smaller parts. In connectionist networks the most natural way

to make the division is into collections of nodes. In previous work with connectionist

models, such collections have been given several different names and have been used

in several different ways. These collections include layers [Rumelhart85], frames [Feld-

man85], planes [Hinton85], spaces and cliques [Touretzky85], groups ISelman85], levels

a d buffers [Cottrell85], and polynemes, xenomes and isonomes [Minsky86. In some

cases they are used to separate different sections of the network so the network is easier

i'i to understand (frames [Feldman85] and planes [Hinton85), and in other cases they are

used so that the structure can be repeated within the network (buffers Co:trelI1851 and

groups [Selman85). The definitions of these collections have always been very task

specific.

'" The node group abstraction of AFL-1 tries to unify these previous methods. With

a single method it will be easier to communicate code, build on other peoples work.

join different systems, and formalize results.

Although the node groups defined in this chapter work to some extent there is

room for considerably more work. There are a few problems with NGs that should be

mentioned. Using the hierarchy created by NGs it is sometimes hard to express the

relations among objects. For example, if John, the-chair and is-on are three vertices

J, in the NG hierarchy, it is not obvious where to put nodes that specify relations among
the objects. Do nodes that signify "John is-on the-chair" get put below John, is-on

* or the-chair? Another related difficulty is with deciding on the order of the hierarchy:

what goes above what. For example, if we have bathrooms and kitchens and they

, can be small or large, which of the hierarchies shown in figure 4.3 should one use?

51

Rooms
i/

/ \

Bathroom Kitchen
/ \ / \

Small Large Small Large

Rooms
/ \

., /\

Small Large
I' \ /

Bathroom Kitchen Bathroom Kitchen

Figure 4.3: Possible Hierarchies for the Room Example.

52

,S

Chapter 5

CIS - A Production System

This chapter describes the Concurrent Inference System (CIS), a production system

implemented in AFL-1. The description brings out some issues in the design of activity

flow networks and gives an example of how to program with the AFL-1 language.

Production Systems are well suited for an example since their techniques are non-trivial

but relatively well understood.

In the system described in this chapter, and in the other examples described in this

thesis, the reader should pay particular attention to the following issues:

* The use of node groups to create repeated structures in the network.

* The use of active structures.

9 The constraints imposed by the networks being static.

* The way one can make an AFN focus - this is a problem that plagues all concurrent

systems.

9 -* The explicit representation of information and control flow.

The inference mechanism used by CIS includes most of the capabilities of both

the Mycin system [Davis771 and of OPS5[Forgy8l]. A currently implemented version

is capable of forward and backward chaining, which happen concurrently; using meta-

rules of the sort described by Davis [19801; and reasoning with "uncertainty", a variation

of Zadeh's rules [1965]. Although not implemented, suggestions on how the system can

. select the most pertinent questions to ask according to specified heuristics, and on

how to implement explanation facilities are given. With 100,000 rules on the current

implementation of CIS, a global inference step takes less than two seconds. A global

inference step is the time needed for a single change to percolate through all the rules.

Some features of existing production systems are hard or expensive to implement

with AFNs. These include the use of high-precision numbers, the ability to dynami-

cally bind arbitrary values to a parameter, general purpose unification algorithms, and

the ability to dynamically create an arbitrary number of instances of an object. It

will be argued in this chapter that many practical production systems do not require

53

1/. • d. ' % ° ' , o ' . - . " - " ' ' ' '' - k
, -° %

these features. The rule sets of .lycin Davis77 . Ri .McDermott80 and Prospector

Gaschnig8O can be implemented without them, with no loss of power. On the other
hand, highly numeric applications that require 64 bit floating point numbers would be

impractical to implement with AFNs.

V ,CIS will be described incrementally by building up through the following features
.-,. to the final system.

" Forward Chaining - a simple system that activates propositions in the then-parts
or rules with active if-parts.

" Input and Output - nodes are added that allow the system to communicate to

the outside world.

" Backward Chaining - a mechanism that allows the system to search from a goal
proposition for propositions that assert that goal.

" * Parameter/Value Pairs - the ability to represent assertions in terms of parame-

teri'value pairs instead of atomic propositions.

* Meta-Rules - rules that control the invocation of other rules.

" Objects - the ability to define objects and then create instances of those objects

- assertions are now object/parameter/value triplets.

" . Fuzzy Reasoning - assertions can have analog values which signify to what extent

they are true; methods for combining these values are included.

Each of these section shows the necessary AFL-1 code. Sections 5.10 and 5.11
discuss focus and explanation but do not give any code. Section 5.12 discusses issues

of activity flow programming and the Concurrent Inference System.
Information on the syntax and semantics of AFL-1 can be found in chapter 3 and

4.

4,.

5.1 Antecedent Reasoning (Forward Chaining)

Two types of objects exist in the antecedent reasoning system: parameters and rules.

..- The parameters are atomic propositions - for example, has-hair, is-ungulate or

color-red; rules are used to define relations among these parameters. The param-

eter and rule objects are defined using the defgroup form discussed in chapter 4.
Figure 5.2 shows the AFL-1 definitions of the node groups. Each rule added to the

54

04

activity flow network (AFN) will be an instance of the rule NG and each parameter

will be an instance of the simple-parameter NG. In this purely antecedent system,

the NGs only have a single node and the network resembles a truth maintenance system

[Doyle79].

Using these NGs, the following parameter and rule instantiations will get compiled

into the network shown in figure 5.1.

(make-simple-parameter 'has-hair)
(make-simple-parameter 'gives-milk)
(make-simple-parameter 'is-mammal)
(make-simple-parameter 'has-hoofs)
(make-simple-parameter 'is-ungulate)
(make-simple-parameter 'has-black-stripes)
(make-simple-parameter 'is-zebra)

(make-antecedent-rule 'animal-rule-I
'(if has-hair)
'(then is-mammal))

(make-antecedent-rule 'animal-rule-2
'(if gives-milk)

'(then is-mammal))

(make-antecedent-rule 'animal-rule-3

'(if is-mammal has-hoofs)
'(then 'is-ungulate))

(make-antecedent-rule 'animal-rule-4

'(if is-ungulate has-black-stripes)
'(then is-zebra))

The active nodes of the rule groups act as and gates (MIN), and the asserted

nodes of the parameter groups act as or gates (MAX).

5.2 Communication With The Outside World

The only way an AFN can communicate to the outside world is through the input and

output nodes (see section 3.4). The following description assumes that, at runtime, the
host computer serves as an interface between the AFN and the user by noticing when

an output node is active and by activating input nodes. In CIS the host computer

will only be used to do things that are necessarily serial such as communication with

the user. If the system can get a set of inputs in parallel, as with some sensor based

55
4ytm e

HAS-HAIR GIVE-MILK

ASSERE ASSRTD

ANIM RULE-I ANI. MA RULE-2

ACTIVE ACTIVE

IMAMMAL KA5-HOOFS

ASSERTED ASSERIM

A 'ALR

ACTIVE

rul

1 UGLAE RAK-TIE

Figre .1:TheNetorkGeerte byFu An malRules

Is ;

UNO6nO

A4ML-U&

reminder of syntax

(make-node name &optional (Threshold *active*) (Slope *nil*)
(Rise *active*) (Saturation *saturation*))

(make-er-link from-node-name to-node-name &optional (Weight *active*))
(defgroup group-name argument-list krest body)

*the node groups

(defgroup simple-parameter ()
(make-max-node 'asserted))

(defgroup antecedent-rule (if-parameters then-parameters)
(make-min-node 'active)
;; make a link from each if parameter to the active node
(dolist (parameter if-parameters)

(make-er-link '(< parameter asserted) 'active))
;; make a link from the active node to each of the then parameters
(dolist (parameter then-parameters)

(make-er-link 'active '(< parameter asserted))))

Figure 5.2: The Definition of the Simple-Parameter and Antecedent-Rule NGs.

57

V..

F

IS-ZEBRA QLESTION

INPUTALREADY-

parameter proup

i Figure 5.3: The Zebra Instance of the Simple-Parameter NG Including I/O and Ques-

e~tion Asking.

~production systems such as PDS IFox83], these inputs are attached directly to the

q input nodes of the AFN. Such direct connections will not be discussed in this thesis.

' To provide CIS with /O, we add two nodes to the simple-parameter NG, an in-
put and an output. Using the input nodes the host cpututer can assert parameters,

and using the output nodes it can check whether parameters are asserted.

n5.3 Asking Questions

In many applications one wants a production system to ask questions rather than

~having it rely on spoon fed information. To allow CIS to ask questions, we add a
p node, the want-to-know node, and a node group instance, the question-group, to

the simple-parameter NG. The question-group is supplied by the AFL-N language

and has two nodes, the ask node and the already-asked node. Figure 5.4 shows the

AFL-1 definition of the new simple-parameter NG, and figure 5.3 shows the network

created by instantiating it.

The activation of the want-to-know node signifies that for some reason (given in

the next section), the system wants to know if the parameter is true. The want-to-

know node will activate the ask node unless the already-asked node is active.

So that the host computer knows at run time where the ask nodes are, the

question-group supplies it, at compile time, with a data structure for each parameter.

This data structure includes a question string, and pointers to the ask, already-asked

and input nodes of that parameter. At run time the host computer executes the fol-

58

A I. .

(defgroup question-group (input-node question-string)
(make-latched-input-node 'already-asked)
(make-output-node 'ask)
(make-ir-link 'already-asked 'ask *saturation*)
(add-to-host-record (get-node 'ask) (get-node 'already-asked)

input-node question-string))

(defgroup simple-parameter ()
(make -max-node 'asserted)

;; the input
(make-input-node 'input)
(make-er-link 'input 'is-true)

;; the output
(make-output-node 'output)
(make-er-link 'is-true 'output)

;; the want-to-know node
(make-node 'want-to-know)
(make-ir-link 'asserted 'want-to-know *saturation*)

;; instantiating the question group
(make-question-group 'question (get-node 'input)

this- instance-name)

(make-er-link 'want-to-know '(question ask)))

Figure 5.4: The Definition of the Simple-Parameter NG Including I/O and Question

Asking.

59

0.

Input Internal

ActvaesNodes Nodes

has-hair? (yes nil): Input Nodes
According to

Answers

Parameter Scans Output
.ata Structures Looking Nodes

l~aua tructres I-or
(contain Active

S CD 0] question strings Ask or
c I and locations Output

Use of nodes) Nodes
. User

t lost Computer Activity Flow Network

0J Figure 5.5: The Interface Between the AFN and the User.

lowing routine. A diagram of this interaction is shown in figure 5.5.

do forever

for all parameters P

if ask-node of P active

print out question string of P

wait for answer from user

activate the input node of P according to answer

activate the already-asked node of P

When a parameter is asserted by the host computer at run time, it takes some

time for the effect of the change to propagate through the network. The unit of time

required for a changed assertion to propagate is called a global inference step. This

unit consists of the length in links of the longest path the assertion travels times the

V time taken by aft-step (see section 3.5). In CIS the longest path length is twice the

depth of the rules, and since rules are rarely 10 deep, a global inference step can

usually consist of 20 aft-steps. To guarantee that the user is not asked unnecessary

questions, CIS takes a a global inference step between each question.

~., After each global inference step the host computer picks at random a parameter
with its ask node active to ask. Section 5.10 discusses how the AFN instead of the

host can decide which question gets asked.

60

11jm l

5.4 Consequent Reasoning (Backward Chaining)

Often in Production Systems one is trying to find out whether certain "goal" parameters

are true or not, and it is desirable for the system to only ask questions that could lead

to the assertion of one of these goal parameters. This sort of reasoning is often called

backward chaining, goal-directed reasoning or consequent reasoning. The consequent

reasoning used in CIS differs slightly from conventional consequent reasoning since it

happens concurrently with the antecedent reasoning.

To include goal directed reasoning in CIS, we add a want-to-know node to the

rule group, analogous to the one in the parameter group, and we add some extra links

between the two types of groups. Figure 5.7 shows the AFL-1 definition of the new

rule group and figure 5.6 shows the network generated by one of the animal rules. The

extra links point in the opposite direction from the previous links: the want-to-know

activity flows in the opposite direction from the true activity.

The backward chaining done by CIS has two advantages over many current produc-

tion systems. Firstly, since the "want-to-know" and "true" activity flow across different

links, the antecedent and consequent reasoning happen concurrently. Consider a medi-

4; cal diagnosis program which is searching for disease X, and meanwhile stumbles across

all the symptoms for a perhaps much more serious disease Y. Most current systems

would ignore this, and perhaps not come to disease Y for a long time. CIS would find
Y while it starts searching for X.

Secondly, unlike Prolog and Mycin, the inferences are not restricted by recursion to

follow the same path as the control. The backward chaining done by CIS is therefore

easier to extend. Three examples of such extension are:

" Backward chaining links can easily be excluded from some rules; this allows a

mix of antecedent and consequent rules.

" With very few changes meta-rules of the sort discussed by Davis ,801 can be

implemented; such rules are discussed in section 5.6.

* It is easy to make "fuzzy" backward chaining links and use these links as one of

many heuristics that guide the search rather than force it. This will be discussed

in section 5.10.

61

V~r W .

IS-ZEBRA QU EstI10

N:NVnu-

OU PUTASK
output- ouput-node

WANTFigure ~ACIV T.:ThOewokGneaeKbN OnsqetAiW ue

m 6n-odq a-nd

(defgroup consequent-rule (if-parameters then-parameters)

(make-min-node 'active)
(make-node 'want-to-know)

;; make the forward and backward links to the if parameters
(dolist (parameter if-parameters)
(make-er-link '(< ,parameter asserted) 'active)

(make-er-link 'want-to-know '(< ,parameter want-to-know)))

make the forward and backward links to the then parameters
S (dolist (parameter then-parameters)

(make-er-link 'active '(< ,parameter asserted) weight)
(make-er-link '(< ,parameter) 'want-to-know)))

Figure 5.7: The Definition of the Consequent-Rule Node Group.

5.5 Parameter Value Pairs

With the asserted node of the simple-parameter group, the only values a parameter

can have are true or nil. If one desires to distinguish between false and unknown, or

among several values, more nodes must be added.

CIS includes a separate node for each value a parameter can have. This imposes

the following two restrictions on how values can be used in CIS:

. The values a parameter can be bound to must be specified at compile time. At

run time the user selects one of the specified values.

" The set of values can't be large - in particular, infinite. A set of 100 or so values

Sis reasonable but 32-bit integers are not.

In most rule sets the first restriction is not a problem, and in many current pro-

duction systems including Mycin, KEE and Prospector one usually defines at compile

time the values a parameter can be bound to since this helps prevent errors. For the

values of parameters that differ every time a rule set is run, such as the patient's name

in Mycin, the host computer can bind the name to a generic value, such as name-i,

and make inferences using the generic value. The system might include a few different

generic values so it could make inferences about a few different patients at the same

time.

The second restriction precludes the use of integers and floating point numbers.

Although most other production systems allow integers and floating point numbers,

63

". "

. • ," . . 4 -" " *J•* .. J- .

many applications don't need them. For example Mycin only uses integer values for age.

body temperature and dates of last examination or immunization. For these parameters

32 bit integers are not needed. A 100 or so values are plenty for these parameters and
qualitative measures such as child, young-adult, adult, or senior-citizen for age,
and low, normal, high or critical for body temperature will probably be sufficient.

Similarly, the rule sets of Prospector and R1 do not require high-precision numbers. If
an application requires 64 bit floating-point values, the problem is not well suited for

AFNs.

To include values in CIS we define the value group. A parameter group creates
an instance of this value group for each of its values. Figure 5.9 shows the AFL-1

definition of the value group and the new definition of the parameter group. The

animal rules given in section 5.1 are reformulated in terms of parameter/values below.

Figure 5.8 shows the network generated by covering instance of the parameter NG.

(make-parameter 'skin-pattern '(black-stripes dark-spots tawny-color))
(make-parameter 'covering '(feathers hair))

(make-parameter 'animal-class *(mammal bird reptile))
(make-parameter 'eating-class '(ungulate carnivore))
(make-parameter 'animal-name '(cheetah zebra ostrich))

(make-parameter 'ped-type '(claws hoofs))

(make-consequent-rule 'animal-r-ale-i

'. ' (if (covering hair))
'(then (animal-class mammal)))

(make-consequent-rule 'animal-rule-2

'(if (animal-class mammal) (ped-type hoofs))

'(then (eating-class ungulate)))

(make-consequent-rule 'animal-rule-3
'(if (eating-class ungulate) (skin-pattern black-stripes))
'(then (animal-name zebra)))

By default, the parameter NG places a mutually exclusive group (see chapter 7)
around all its values, so only one can become active at a time. Using the keyword
argument (:exclusive NIL), this group can be left out.

' -',S This new formulation of the animal rules has two advantages over the previous,..'. formulation. Firstly, it will reduce the number of questions because it will ask a gen-

is eralized form. CIS will ask the question "What is the skin-pattern of the animal?".
rather than -Does the animal have black-stripes?". Secondly, because of the mutually"'S.

exclusive group it knows that if a parameter has one value, it does not have the others.

64

[*1%

4- COVERING

QUEST[ON

ALREADY- ASK
ASKED Oinhibit* output-node
input-node

question Iroup

ma-nd maxunodu

INPUT OTU
ASSIRIHTUIP

input-node max-node uptnd

V 'alue grolan

llarlinetcl gruup LJa.W

Figure 5.8: The Covering Instance of the Parameter NG.

65

4%

(defgroup value ()
(make-node 'asserted)

(make-latched-input-node 'input)

(make-output-node 'output)

(make-er-link 'input 'asserted)

(make-er-link 'asserted 'output))

(defgroup parameter (values &key (exclusive t))

; creates a value group for each value

(dolist (value values) (make-value value))

;; is activated when any of the values is active

(make-or-group 'a-value-asserted (get-node-list '(* asserted)))

;; makes sure that only one of the values is active

(if exclusive

(make-me-group 'value-selection (get-node-list '(* asserted))))

;; the want-to-know node

(make-node 'want-to-know)

;; deactivates the WANT-TO-KNOW node if one of the values is known

(make-ir-link '(a-value-asserted result) 'want-to-know *saturation*)

;; creates the question group with all values as possible answers

(make-question-group 'question (get-node-list '(* input)))

;; activates the ASK node if the WANT-TO-KNOW node is active

(make-er-link 'want-to-know '(question ask)))

Figure 5.9: The Definition of the Value and New-Parameter Node Groups.

66

PR 4 Pp . P~~ ~ .4.-' %

(defgroup meta-rule (if-parameters then-parameters)
(make-min-node 'active)

;; make links from if parameters.

(dolist (parameter if-parameters)
(make-er-link '(< ,@parameter) 'active))

;; make links to the then parameters
;; make the link inhibitive if "not" is specified.

(dolist (parameter then-parameters)
(if (equal (first parameter) 'not)

(make-ir-link 'active (,6(cdr parameter)))

(make-er-link 'active ' <@parameter)))))

* '.. Figure 5.10: The Meta-Rule Node Group.

For the animal rules the system knows that if an animal is a mammal, it is neither a

bird nor a reptile; this saves the user from having to add these rules.

5.6 Meta Rules - Rule Set Activation

In practice, it is important to have task specific rules that control the invocation of

other rules Davis79], [Gaschnig82]. An example of such a rule is: "if the patient has

stepped on a rusted nail, then ask questions about tetanus (activate the tetanus rules)."

Davis '801 named such rules, "meta-rules", and Prospector [Gaschnig82] names them
"contextual relations".

To include this type of rule in CIS we add the meta-rule NG which only differs
from the antecedent-rule NG in that it does not append "asserted" onto the if and

then parts. Figure 5.10 shows the AFL-1 definition of the meta-rule NG. This change
-. allows a rule to specify the want-to-know node of a parameter as its then part. By

controlling the want-to-know node of a parameter one can control the activation of a

set of rules. For example, the tetanus rule given above could be implemented by having

a rule with "stepped-on rusted-nail asserted" as its if part and "tetanus want-to-know"

as its then part. Figure 5.11 shows the network created by such a rule. This network

causes all the questions relevant to tetanus to be asked if the parameter "stepped on

rusted nail" becomes asserted.

Meta-rules can also be used to deactivate or order the activation of rule sets. Ex-

amples of such meta-rules are:

67

-.-- '-.-

. "- - / .. < , / , ' . # - - . . -. • - - . . ,f- , . ' , .. . - - . % . , r. -, .

SRLSI'I1)NAII. I

II ASSIFRTII)I

U malu nd up

I - - -

pariunmrr_gop

Ii1AS-'I'I.T ANUS

ewt-rule growp 2 rmeter grmp - - -

Figure 5.11: The Network Created by the Tetanus Meta-Rule. In the diagram the

dashed groups signify that not all the nodes in those groups are shown.

(make-rule beach-bun-rule- 1
(if (near-beach false))
(then (surf-is-good (not want-to-know))))

(make-rule beach-bum-rule-2
(if (beach-is wicked-good))
(ordered-then (how-to-get-there want-to-know)

(do-you-want-to-come want-to-know)))

The first of these capabilities is included in CIS. The second is not but is not difficult

to add.
This section discussed domain specific methods for controlling the line of reason-

ing by manipulating the want-to-know nodes, section 5.10 discusses some domain

independent methods.

5.7 Objects And Instances

When a rule set includes several instances of an object that all obey the same properties
(rules), it is convenient to create a single set of rules which are valid for all instances.
To allow for this, systems such as Mycin, OPS5 and KEE have generic objects (often
part of the object, attribute, value triplet) which are used in the rules. The system can

68

0

,,,,: • ~~~~~~~~d.. ,, ,,. , /2:; ,, ,

//\
@L7MUM-1 MIMW4 Am

Figure 5.12: The Object Hierarchy of Mycin [Davis771.

create multiple instances of these objects. For example, in Mycin, a culture is defined

as an object and during a session several instances of this object are created. These

instances obey the same rules but can have different values bound to their parameters

and can coexist without interacting. In Mycin, the objects are grouped in a hierarchy;

this hierarchy is shown in figure 5.12.

)CIS allows multiple instances of an object by creating multiple networks for that

object. This requires than one knows at compile time the maximum number of instances

that will be created. In most practical applications, this is not a problem since the

number of instances created does not vary greatly from one use of a system to the

next. For example, in Mycin, we know that there is only going to be a single patient

and the patient will usually have at most three cultures taken each with possibly three

organisms.

Similarly, in RI there is only a finite number of backplanes, each with a finite set of

slots which only accept one of a finite set of modules. The combination of these finite

sets may seem large, but when analyzed, is not unreasonable. Assuming it takes 100

links to specify a module and a maximum of 100 modules need to be placed, then 10,000

links are needed to represent the modules. If there is a maximum of 100 slots for the

modules, another 10,000 links are needed, one for each slot/module combination. Since

all other sets of links will require no more than the same order of magnitude in number,
on the order of 100,000 links are needed for the whole system. As chapter 8 discusses,

networks of a million links are reasonable for machines that exist today, and networks
of a trillion links will probably be practical in ten years from now. The 100,000 links

is therefore not pressing the current limit.

Prospector also uses a limited form of object instantiation. "potential matches

are relatively few in number and can be precomputed ... our current implementation

tacitly assumes that any variable can be bound in only one way, so that. for example.

69

only one entity composed of galena would be allowed" Duda78 This limited form

of instantiation, and even the less limited form where only a fixed number of entities

composed of galena would be allowed, can be implemented in CIS.

Even with a fixed number of instances compiled into the static network a few things

can be done if additional instances are required at run time. Firstly, an extra instance

sub-network could be added. This might take some time but would not have to be done

often. Secondly, one of the instance sub-networks could be arbitrated between two or

- more instances - this would cause them to run sequentially.

To define objects in CIS, one defines a node group (NG) for that object. To create

""' instances of the object, one instantiates that NG. Such a node group will henceforth

be called an object NG and includes in its body all the parameters that the object

has and all the rules that are particular to the object. At run time, the host computer

assigns particular names of new instances to particular instance sub-networks.

An animal object NG can be defined for the animal rules given in section 5.1.

This wouid allow the system to reason about several animals at the same time. The

animal object NG would be defined and instantiated as follows:

(defgroup animal ()

(ma-e-parameter 'skin-pattern '(black-stripes dark-spots tawny-color))
(make-parameter 'skin-cover '(feathers hair))
(make-parameter 'animal-class '(mammal bird reptile))
(make-parameter 'eating-class '(ungulate carnivore))
(make-parameter 'animal-name '(cheetah zebra ostrich))
(make-parameter 'ped-type '(claws hoofs))

(make-rule 'animal-rule-i
'(if (skin-cover hair))

-'(then (animal-class mammal)))
. j

(make-rule 'animal-rule-2
'(if (animal-class mammal) (ped-type hoofs))
'(then (eating-class ungulate)))

(make-rule 'animal-rule-3
-. 5p. '(if (eating-class ungulate) (skin-pattern black-stripes))

'(then (animal-name 'zebra))))

(make-animal 'first-animal)
(make-animal 'second-animal)

(make-animal 'third-animal)

Object NGs as well as allowing multiple instances to be created, allow a clean way

to separate sets of rules into modules.

~ '~ 70
" ,% ,

w, -,. + d + 'P r . - . " ." . -+" - . " . " . + " . ' . .. " • . - " • . " • ," . - " . . " . " . " .
S"• % % % % " - -" + +% " ' " • + • • + - + + " % , ." " " " +" " " " - - ' +-'

5.8 Variables

• "Although rules defined in an object NG (henceforth object rules) allow references

within a single instance of an object, they can't make references to different instances

or objects. Object rules allow rules with a single variable such as:

(if (x animal-class mammal) (x pod-type hoofs))
I (then (x eating-class ungulate))

but do not allow rules with multiple variable such as:

(for-variables ((x in animal-instances)
V (y in animal-instances))

(if (x is-zebra) (x father y))
(then (y is-zebra)))

(for-variables ((x in animal-instances))
(if (equal-number-of (x is-zebra) 3))
(then (pack-of zebras)))

(for-variables ((x in animal-instances)
(y in people-instances)

(z in object-instances))
(if (y on x) (x is-horse) (y holding z) (z is-long-stick))
(then (y playing-polo)))

This is because the rules within the definition of an object NG are instantiated

once each time an instance of that object is created and only refer to the parameters

of already existing instances. The later three rules given above require that a rule of

an instance has a link to a different instance that might be created at a later time.

To create rules that make references across instance boundaries, the same consequent-

rule NG can be used but it is used outside of the definition of an object group and
the for-variables form (defined in section 4.4) is used to reference the instances. All

the rules that are used to make references among instances of a particular object are

grouped together in a class NG. So for example, to add a father rule to the animal
rules the following code could be used. Figure 5.13 shows some of the network this

code creates.

(def group animal-class (animal-instances)
(for-variables ((x animal-instances))

(make-animal x))

(for-variables ((x animal-instances)
(y animal-instances))

71

-. ./ II N N Pp 19 ,, b P.P
ei 'p

.%\%1AI -WORII)
- -- A If I I.R-A NMAI +ANJMA1 -2- -

\NIMAI.-l - - - -ANIMA.-2

II ~ NSSI.R (11) I
II i Y ll. g* I IC

I II I I I

-value group -
parameter group

IS-ZLIR I S-/FIIRA

.. r CROSS.INSIANCI -RUI. I iYs

-SSFAE ISU IYED

Iii I jI Imax- node ACI1VE I- ax-luxl¢

value group _ _ I Lcnnscquen
t ' ru lc group value group

I parrictcL I E SraranIcrrou-

animal group animal group
- --- - -L. - - -

animal-class group

'" a'+

Figure 5.13: Example of Cross Instance Rule.

(make-parameter (combine 'father x y) '(yes no))

(make-consequent-rule 'cross-instance-rule-1
''a '(if (.(combine 'father x y) yes)

(.x is-zebra yes))
'(then (.y is-zebra yes)))))

(make-animal-object 'animals '(animal-I aniual-2))

To create rules that cross class boundaries, the rules are defined at yet a higher

level. An example of a cross-class rule is:

(for-variables ((x people-instances)

(y animal-instances))

(make-parameter (combine 'on x y) '(yes no))
(make-consequent-rule 'cross-class-rule-I

'(if (.(combine 'on x y) yes)

(.y is-horse yes))

'(then (.x is-horseback-riding yes))))

Figure 5.14 shows the hierarchy of node groups discussed so far.

72

- .,

ro 0 GROUPS

0 NODES

.. UWne . e-nm M-ks

want-to-know vaue one-active activ wan-o-know

Uk amd input ouqut Ie

Figure 5.14: The Hierarchy of Node Groups in CIS.

The cross-instance and cross-class rules create an instance of the parameter and

rule groups contained within their form for each combination of their variables. This

means that many rule and parameter instances can be created if there are several

variables each with several bindings. The user should take care when creating cross-
instance and cross-object rules.

5.9 Inexact Reasoning

4, Inexact reasoning is the ability to reason about assertions that are not known with

- absolute certainty. So far CIS has only allowed values of 1 or 0 on its nodes - each

node had to be completely on (active) or completely off (inactive). To include inexact

reasoning in CIS we allow the assertions to have intermediate values.

,, There have been several proposals concerning how to implement the combining
functions for rules of inexact or uncertain assertions. The most popular of these are

variations of Zadeh's rules of fuzzy sets '651, and variations on the methods of Bayesian

decision theory. The first type interprets the values associated with a parameter loosely

as "certainty factors", "degrees of membership" or "degrees of belief"; the second type

interprets the values more precisely as probabilities. The combination functions of fuzzy

sets are relatively easy to implement on an activity flow network since they are simple

'd,$,I 73

4

I WIND MONTH

5 rRONG I I AUGUST

ASSER rFD IASSERTED

max-node I max-node

I I
alue group aI group

IBOOGIE-ON-DOWN-TO
lparame aramrtu r Jru_ - prmte~ u -

uI intnt re
-F-Fog

V. maximume
b m h Figure 5.15: Inexact Beach-Bum Rule.

t tt(Min and Max) while those of Bayesian decision theory are expensive to implement

unless the functions are built into the primitives.
l CIS uses a variation of Zadeh's rules similar to that used by Mycin's rules and

Prospector's "logical relations". The minimum of the input activities is used for

conjunction (AND), and the maximum is used for disjunction (OR). If the result is

• below some threshold, then no activity is passed on. The active node of a rule group

thus takes the Minimum (AND) of the activities of all the elements of its if-part, and

the asserted node of a value group takes the Maximum (OR) of all its inputs.

Rules now require a weight of belief for each of the then parameters. This weight is
placed on the link between the active node of the rule group and the asserted node

of the value group. Figure 5.16 shows the AFL-1 definition of the new value and rule

NGs. Figure 5.15 shows the network that the following rule compiles into.

b. 74

(defgroup value ()
(make-node 'asserted .2 1 .2)
(make-latched-input-node 'input)

(make-output-node 'output)

(make-er-link 'input 'asserted)

(make-er-link 'asserted 'output))

(defgroup consequent-rule (if-parameters then-parameters)

(make-sin-node 'active .2 1 .2)
(make-node 'want-to-know)

" make the forward and backward links to the if parameters

(dolist (parameter if-parameters)

(make-er-link '(< @parameter asserted) 'active)

(make-er-link 'want-to-know '(< .(first parameter) want-to-know)))

Make the forward and backward links to the then parameters.

The forward link has a weight specified by the third element of
the parameter.

(dolist (parameter then-parameters)

(make-er-link 'active '(< I(cdr parameter) asserted)

(first parameter))

(make-er-link '(< .(second parameter) want-to-know) 'want-to-know)))

'p. Figure 5.16: The Value and Consequent-Rule NGs for Inexact Reasoning.

(rule beach-bum-rule-I
(if (wind strong) (month august))

(then (.8 boogie-on-down-to the-beach)))

An alternate OR combining function is:

Or : result a MIN (SUM(sources) 1)

This combining function has the advantage that the more active sources there are the
..

more active the result will be. It might be reasonable to use this OR function and to use

MIN for the AND function. Currently rule groups with either combining function are

available; make-sum-consequent-rule creates rules with a SUM combining function

while make-consequent-rule creates rules with a MAX combining function.

Everything up to this point in the chapter has been implemented and works. What

is discussed in the following two sections has not yet been implemented.
.'4P 75

"'

Ad

b.

5.10 Focus
.i,

This section discusses mechanisms that select the most pertinent questions to ask the

user first. Such selection concerns asking related questions together and asking more

critical questions first, and will henceforth be called focusing. Like the Meta-Rules

discussed in section 5.6, the focusing methods control the invocation of rules, but

instead of using task specific rules to invoke other rules, they use task independent

mechanisms.

On serial production systems that backtrack, a limited form of focusing comes at no

cost. When serially backtracking through the inference tree, related questions are asked

together by virtue of the local tree walk. It has been noted IDuda78, Miller821 that this

sort of focusing is of a restrictive type and does not allow many of the powerful focusing

methods humans use. Again, a general method of conventional programming, recursion,

allows for a restricted form of a desirable effect but without significant changes, can't

be extended. Some systems such as Prospector 'Gaschnig821, Internist Miller84 and

p AM 'Lenat78' include more advanced focusing ideas based on heuristic methods. These

systems rate the best, or most interesting parameter by using a set of heuristic rules.

Each rule adds to the interest value of parameters according to some heuristic, and the

parameter with the greatest interest value is selected.

*Such techniques can be added to CIS easily, and because they run concurrently,

will not slow the system down. An interest measure can be added to each parameter

in CIS by allowing the want-to-know node to have any activity level instead of just

being on or off. So that the AFN can select the parameter that wants to be known

the most, a mutually exclusive group (see chapter 7) is placed around the ask nodes

of all the parameters. With the ME-group, the host computer will only have a single

-... choice of which question to ask. The remainder of this section discusses various focusing
'a heuristics which could be used to activate the want-to-know nodes.

5.10.1 The More the Better

The first heuristic is to more highly activate the want-to-know nodes of parameters

that lead to more results. For example. in the animal rules given is section 5.1, consider

the goal "find if the animal is either a zebra or a giraffe": the parameter is-ungulate

e'ds to both is-zebra and is-giraffe. If parameters with more prospects are activated

:_ore. this parameter (is-ungulate) will be asked first, and if answered in the negative,

%ill be the only question ever asked. The system can save asking many questions by

using this trivial heuristic - recursive backtracking systems don't use it.

76

.d * , *' p -' p* , " " *S"-" " . ."'' . : . '" '. . . ." . , .' ' "" " "
%,

This heuristic method comes for free in CIS. Since want-to-know nodes are sum

nodes, they add the values on the want-to-know nodes that have links to them.

5.10.2 Related Set Activation

The following method can be used to group related questions together. A related-set

group is defined that takes as its arguments a list of related parameters, and puts a
mutually-excitatory groups around the ask nodes of these parameters. To prevent

the network from uniformly saturating, a mutually-inhibitory group (also called

mutually-exclusive group) is created around the sets of related parameters so that no

more than one of the sets is active at a time. The mutually-excitatory and mutually-

inhibitory groups will activate all the questions of one set before the system goes on
to the next set. The height of hysteresis (discussed in chapter 7) of the mutually-

Inhibitory groups, could be tuned to best decide when it is worth switching focus

between two related sets.

5.10.3 Strict Ordering

The focusing mechanism used by many backtracking serial production systems can be

added as another heuristic to CIS. By including this heuristic we only help guide the

reasoning rather than force it a particular way. To include such a mechanism, nodes
would be added to the rule node groups that order the activation of the want-to-know

nodes of the rule's if parameters. A path would also be necessary from the antecedents

back to the rule to state that the particular antecedent has been exhaustively searched.

In such a scheme three types of activity would flow between the parameters and rules
- want-to-know, truth, and searched. The first flows backwards the other two flow

forward.

5.10.4 Close to Answer

Another heuristic is to prefer rules that have most of their antecedents satisfied. This

heuristic can be implemented by having an additional node in each rule NG that

detects the difference between the current truth activation coming into the rule and

the activation needed to fire the rule. Rules that are closer to being fired will send more
want-to-know activity to their antecedents than rules that are far from being fired.

77

.?"P ~ .1. .

O-

5.11 Explanation

It is important for a production system to be able to explain what it is doing and justify

its decisions in a way that can be understood by the user. Such a capability is both

important when developing a rule set so that it is easy to debug, and when using a rule

set so that the user feels more confident about the decisions and can catch mistakes.

This section outlines a way to add some simple explanation facilities to CIS.

In two places during the execution of CIS it makes sense to let the user ask about

the reasoning process. One is when the system asks a question and the user is interested

in why the question is being asked. The other is when the system changes an assertion

and the user is interested in why the assertion has changed.

The host computer can allow the user to ask "Why" whenever an assertion changes

or a question is being asked. The ability to answer these questions can be added to

the AFN by creating nodes and links in the rule, parameter and value groups that

allow a trace of the causes of the state in question. In the case of tracing assertions,

the desired links would go backward through the rules and if a question is asked by

the user, activate a node in each parameter that supports the given assertion. In the

case of tracing questions. the desired links would go forward through the rules and,

if a question is asked by the user, activate a node in each parameter that led to the

'- - activation of the given want-to-know node. Each parameter would have an output

".':. node which is activated when that parameter has an effect on the changed assertion or

Squestion asked. The system could execute this search one level of rules at a time.

More flexible techniques of the sort discussed in iSwartout8l could be implemented

without great effort.

5.12 Discussion

There are several issues of activity flow processing with respect to the Concurrent

Inference System (CIS) that are worthy of review or discussion.

5.12.1 Limitations

Many abstractions that are natural in symbolic processing languages and which most

programmers take for granted. are unnatural and expensive to implement with activ-

itv Hlow networks. Such abstractions include recursion and general purpose variable

binding. Likewise. many abstractions that are natural in activity flow languages are

unnatural and expensive to implement with Symbolic Processing Languages. There

78

4.- , . . . - -

are several consequences of these expenses on the design of CIS. These consequences

are summarized here.

Restrictions imposed on CIS by AFNs:

" High precision numbers and operators to manipulate them are not supplied.

" The possible values of the parameters must be given at compile time.

" The maximum number of instances of an object must be given at compile time.

" Rules with a large number of variables each which is quantified over a large range

of values are expensive.

*Features included in CIS because of its implementation on AFNs.

" Forward and backward reasoning are run together. Advantages of this are dis-

cussed in section 5.4.

" Complete AND/OR searches are executed between questions.

" Large sets of heuristic rules are used to select which question to ask.

5.12.2 Extensions

Many of the limitations of CIS can be avoided by expanding the model. For example,

to manipulate high-precision numbers, one could use a model that intermixes data flow

and activity flow networks, and to dynamically create instances of an object, one could

use a system that creates extra network structure as it is needed. Another interesting

extension would be a method that changes the weights on the forward links between

the rules and parameters according to some measure of how well the network made its

inferences.

*: 5.12.3 The Maximum Numbers of Rules

*By making some assumptions about the rules and parameters and imposing a limit on

the time the user is willing to wait between questions, an upper bound on the number

of rules can be given. With the following assumptions it is possible to include 100,000

rules in CIS.

* The maximum time a user is willing to wait is 2 seconds.

e The maximum depth of inferences in the system is 20 rules.

79

%i

it 4r r

e The average rule has three antecedent and two consequent parts.

e The average parameter has five values.

* There are five times as many rules as parameters.

This is an order of magnitude larger than any existing expert system.

For 100,000 rules, the above assumptions require a network of 2 million links. With
2 million links an afl-step requires .05 seconds which allows 40 of them to be executed
within a global-inference-step (two seconds). The running time of an aft-step for

other numbers of links can be found in section 8.3.

5.12.4 Concurrency

Researchers have argued that the speedup one can achieve by implementing rule sets on
concurrent rather than serial systems is at best a constant factor jForgy84, Oflazer84".
They make these arguments based on Production Systems developed for single pro-

cessor machines, in particular OPS Forgy781, and only consider a very limited inter-
pretation of a production system. In particular, they consider a model that forces the
selection of rules through a single channel so only one rule can fire at a time (the 'con-
flict resolution" stage). The concurrency available in this model is limited to matching

-. the antecedent parts of productions to changes made to "working memory" by a single
production. Once these matches are made, and a "conflict set" is selected, only a single
production is chosen and fired. This sort of concurrency is pictured in figure 5.17a.

CIS takes advantage of many more sorts of concurrency. Among the sorts of con-
.',.' currency CIS uses are:

-
"

..
p

'

,.Subrule and subparameter concurrency - within the rules and parameters all the
parts act concurrently. For example, at the same time that a value activates
the rules it is connected to, it deactivates all the other values of its parameter,

activates the parameter-known node, and activates its output node.

SConcurrent matching - all the antecedent parts of a rule are matched concurrently.

In fact it only takes a single aft-step to match every rule in the system. This is
possible because the variable references are compiled out so the variable slots do

not become bottlenecks.

' Concurrent forward propagation - all the rules can propagate their inferences

concurrently. There can potentially be a large fan-out so that a single change

80

:: ".. v . .- ". .. . ". . . .'"." . ""'. " "".. • " . ' % " % "% ' - ''"%" :"k

• , . , • % %. - . " . " , , • .. ., - ,., ". . - • " . " " . ',, . - . . ' ,,,u - ,, ,. ' I

ZConcurrent Matching

Act On A Pick A
Production Production

a) Type discussed by [Oflazer841 and [Forgy84.

Concurrent Matching

,., Concurrent Rule Firing

000

b) Type used by CIS.

Figure 5.17: Two Types of Forward Chaining Concurrency.

could propagate to rnake thousands of changes in just a few aft-steps. Note that
this sort of concurrency is much richer than the sort considered by [Forgy84];
figure 5.17 shows the difference between the two types.

* Concurrent backward propagation (Searching) - a completely concurrent AND/OR
search is done from the "goal" parameter to the parameters that can effect it.
Unlike in the concurrent implementations of logical inference systems discussed
in fDouglass85] and [Murakami84', there is no problem with concurrent "AND"
searching. This is again because the variables are compiled out.

" Forward and Backward propagation happen together - as mentioned in sec-
tion 5.4, this has some significant advantages.

" Concurrent question selection - For the system suggested in section 5.10, the

system does a concurrent search of a single question to ask the user.

Although CIS allows all these sorts of concurrency, how well the system takes ad-
vantage of these depends on the particular rule set being used. Since no significant rule

81

%,ja~~ AW~% ." > V N a

,ets have been implemented in CIS. no data is available on the effect of rule sets on

how efficiently the concurrency of the AFN is used.

The main reason OPS allows only a single rule to fire at a time is because some

rule sets programmed in the language are action oriented - rules signify actions rather

than inferences. With action oriented rule sets it is often incorrect to execute certain

rules simultaneously. For example in RI it would be incorrect to put both board-1

and board-2 into backplane-slot-3 if backplanes can only accept a single board.

The conflict among action oriented rules is not a valid motivation for always re-

stricting the system to fire rules serially, for two reasons. Firstly, only subsets of all

the action oriented rules conflict and one should only serialize those subsets. Secondly,

one should separate action and inference oriented rules and only consider serializing

the first type. Conflict sets might be serialized in CIS by defining a node group that

places a mutually-exclusive group around the active nodes of conflicting rules. Such

a group could be instantiated for each set of conflicting rules (actions).

5.12.5 Data Procedure Integration

In CIS all the rules and parameters are active modules. Instead of being manipulated

by an inference engine as in most production sy-tems, they contain their inference

mechanism in their structure. This has both speed and programming advantages over

,-) -p.production systems that separate the inference engine and working memory. In CIS

the inference engine does not serve as a bottleneck because much of the work is done

directly at the data. It has programming advantages for the same reasons as object

oriented languages do. Since the functionality lies with objects rather than in the

middle of some large piece of code it is easier to see what a particular rule does. It

is also easier to make special case rules that differ in some way from the other rules.

This entails defining a new object (node group) rather than playing with guts of the

inference engine.

5.12.6 Meta-Control

Although a AFN cannot manipulate or study its own structure, it can control the

activation of nodes or areas of the structure. In general. this can consist of activating

or inhibiting whole areas of the network or ordering the sequence of activation. In CIS

it consists of being able to activate or deactivate sets of rules. Special purpose rules

can easily be added to control the activation of rule sets. It is easier to implement such

rules in CIS than in other production systems.

82

",
'

• " -.

5.12.7 Inexact Reasoning

There are two types of inexact reasoning in CIS. The first concerns forward chaining.

Activity values are used for all assertions and when forward chaining, these values are

combined by some rules of fuzzy logic. The second concerns selecting questions to ask

the user. Activity values on the want-to-know nodes of the parameters are used to

decide what are the most interesting parameters to ask about. Because the ability to

manipulate activity values rather than binary values is built into the primitives, inexact

reasoning can be implemented cheaply in CIS.

5.12.8 Timing

In circuit design much effort is spent on timing issues; which signal arrives at a given

place first is often important. In CIS timing need not be considered: the relative delays

on the links have no effect. In general CIS can be imagined as a large asynchronous

circuit with no unstable feedback paths. In the case that contradictory sets of rules are

created such as: "if a then b" and "if b then not a", unstable feedback can be created

and an oscillation can occur. This is a bug of the rule set and not of CIS and will cause

a problem in almost all production systems. To help find these bugs, debugging tools

which can recognize oscillations should be supplied.

In other systems implemented in AFL-1 that maintain state within the network

(have positive feedback paths), timing issues must be considered. In AFPLAN, dis-

cussed in chapter 6, there are a few timing problems but they are easy to get around. In

general, a bit to my surprise, I found very few timing problems when programming in

AFL-1, but I expect with more complicated systems, timing can become an important

issue.

83

it..

Chapter 6

AFPLAN - A Planning System

Domain-independent planning systems written in the last 15 years such as STRIPS

LFikes71 , NOAH Sacerdoti75], MOLGEN Stefik81], and TWEAK 7Chapman85], have

relied heavily on the abstractions supplied by symbol processing languages. This chap-

ter will show how a planner, AFPLAN, achieves much of the same functionality with

the abstractions supplied by the activity flow paradigm. Some aspects of the symbolic

planners are hard or inefficient to implement with AFNs. These aspects will be dis-

cussed. AFPLAN was implemented to explore the potential of activity flow languages;

it is not claimed to be a state of the art planner.

Like STRIPS, NOAH, MOLGEN and TWEAK, AFPLAN is a operator/state based

system in which the world state is specified by a collection of propositions, and operators

are used to change the state by activating or deactivating the propositions. The purpose

of the planner is to select an ordered set of operators that when applied to an initial

world state results in a goal state. The significant difference among existing planners

is the strategy used to select this order.

AFPLAN uses the following method. Between each action, AFPLAN does a com-

plete search from the goal propositions for possible next steps. This search is executed

concurrently on a static precompiled network. After the search, a single operator is

selected and applied - section 6.3 discusses extensions which allow the selection of more

than one operator per step. To be selected, an operator must, a) help satisfy a goal

proposition, b) not clobber a proposition needed to achieve another goal, and c) satisfy

at least as many goals as any other operator. Strict adherence to these rules can cause

A, deadlock when a side-step is required; Section 6.6 discusses how such deadlock can be

avoided.

As in NOAH, AFPLAN detects constraints among branches of the search tree.

Like NOAH's "resolve conflicts" critic, it detects operators in one branch that delete

preconditions needed for operators in another branch. Like NOAH's "use existing

objects" critic, it notices when one operator can be used to satisfy two goals. Like
NOAH's "eliminate redundant preconditions" critic, it recognizes when two operators
have the same preconditions.

Because of the expense of storing relations, manipulating variables and passing

84

4WVVW4

complex information with activity flow networks (AFNs). AFPLAN and NOAi func-

tionally differ in three important ways.

1. Because it is difficult to manipulate large dynamic structures with AFNs, AF-
PLAN only manipulates parts of a plan between actions. Systems such as NOAH

manipulate the whole plan before taking a single action. Partial planning some-

times leads to non optimal plans but is perhaps a more realistic view of a real

world planner. By executing actions between subplans, AFPLAN can take ad-

vantage of dynamic feedback from the environment.

2. As with CIS (chapter 5), AFPLAN requires that all variables are quantified over a

fixed set of values at compile time. Figure 6.1 shows an example of the definition

of propositions and operators in which the variables are quantified over a fixed

set of values. The effect of this on the size of network is discussed in section 6.7.

3. Since no pointers can be passed in AFNs, AFPLAN over constrains the network by

p!acing constraints among disjunctive as well as conjunctive subgoals. Section 6.6

discusses this problem and suggests some solutions.

The operator definitions of AFPLAN take six keyword arguments; five are lists of
propositions, the context-list, precondition-list, do-list, add-list and delete-list, and one

is a numeric value, the cost of the operator. The precondition-list, add-list and delete-

list serve the same purpose as they do in STRIPS [Fikes71. The context-list is used

for propositions needed as preconditions to the operator that should not be set up as

subgoals. The do-list can be used to specify functions other than primitive actions to be

executed when the operator is applied; section 6.5 discusses this. The cost argument

is used to specify the cost of certain operators and is discussed in section 6.4.

6.1 An Example

To give a taste of how AFPLAN works, this section describes AFPLAN's solution of

the block world's "anomalous situation" [Sussman73, Sacerdoti75, Chapman85]. Fig-

ure 6.2 shows the problem; it is termed anomalous because many classical planners

such as STRIPS [Fikes7]], PLANNER jHewitt71] and HACKER [Sussman75] made

1 the mistake of putting B on top of C before taking C off A, or of putting C on top
of B in the process of clearing the top of A. Since NOAH and AFPLAN consider the

interactions among the conjunctive subgoals, they do this problem correctly.

85

Z- . '" W6,. _ " " ,',. . ..T J' . r ,, . ' ,t. . .,,v . '

(setq block-names '(A B C))

(defstate ((x (in block-names))
on

* (y (in block-names 'ground (excluding x)))))

(defstate ((x (in block-names 'ground))

is-clear))

(defoperator (move
*(x (in block-names))

from

(y (in block-names 'ground (excluding x)))

to

(z (in block-names (excluding x y))))
:context ((x on y))
:preconditions ((x is-clear) (z is-clear))
:add ((x on z) (y is-clear))

delete ((z is-clear) x on y)))

(defoperator (move

(x (:n block-names))

from
(y (in block-names (excluding x)))
to-ground)

:context ((x on y))
:preconditions ((x is-clear))
:add ((x on ground) (y is-clear))
delete ((x on y)))

Figure 6.1: State and Operator Definitions for the Blocks World.

A

C B
A B B

Initial State Goal State

Figure 6.2: The "Anomalous Situation" in the Blocks World.

86

A-on-li I-on-C

movc-A- Imove-1-
foin-GROUNI)-to-l fom-GROUNI)-to-C

mov-C- 'nvc-C'-
from-A-.o-GROUNI) from-A-to-ll /

-is-dear-cr

Figure 6.3: The Part of the AFN Activated by the Anomalous Situation.
Dark circles show the active states, and dashed lines show preconditions that get deleted

(deactivated) if the operator they are linked to is applied.

V The example will use the operators "move x from y to z" and "move x from
y to-ground", and the state proposit*.ons "x on y" and "x is-clear"; figure 6.1

shows their definition. The operators and state descriptions are compiled into an AFN

in which the variables are compiled out, so the propositions and operators have a

.. subnetwork (node group instance) for each combination of the variables. Section 6.2

describes the networks that are created in further detail, and section 6.7 discusses the

cost of having a separate node group for every proposition.

Once the network is compiled, the user sets up the initial state and specifies the goal

state. In the anomalous situation, the propositions of the initial state are C-on-A,

A-on-ground, B-on-ground, C-is-clear and B-is-clear, and those of the goal state

are A-on-B, B-on-C, and C-on-ground. Figure 6.3 shows the part of the static AFN

that these goals activate.

Since only one copy of each proposition is compiled, branches from different trees

share the same nodes (e.g. there is only one C-is-clear node).

Three operators in the search tree have their preconditions satisfied. Two of these,

move-C-from-A-to-B and move-B-from-ground-to-C, are the operators applied

mistakenly by STRIPS and PLANNER. As the dashed lines in the figure show, both

these operators, if applied, will remove a proposition needed by other operators. The

AFN detects this interaction and puts the two operators in a blocked state.

Since move-C-from-A-to-ground is the only operator left active, the host com-

87

. R_ aI W.

A-on-l ll-on-C

move-A- IflovC ll
fromi-G ROU N)-w-11 from-G ROU N)-to-C

A-is-clear l3-is-clcai C-is-clar O

Figure 6.4: The Active Part of the AFN After Moving C onto the Ground.

puter selects it to be applied (methods of selection are discussed in section 6.3) and

sends it a signal which lets it activate the propositions in its add-list and deactivate

the propositions in its delete-list. The propositions that get activated by the move-C-

from-A-to-ground operator are A-is-clear and C-on-ground, and the proposition

that gets deactivated is C-on-A. Figure 6.4 shows the active part of the network after

0 these changes have propagated through the network. In this network A-is-clear is

blocking move-A-from-ground-to-B so the system selects and applies the operator

'," move-B-from-ground-to-C. In the final step, the only operator left is move-A-

from-ground-to-B, so it is selected.

The plan taken by AFPLAN is, therefore: move-C-from-A-to-ground, move-

B-from-ground-to-C, move-A-from-ground-to-B. This is the best solution. The

operators discussed have also been tested on every other problem using 3 or 4 blocks.

In all cases, the solution was optimal.

a.

6.2 The Afplan Node Groups

The state and operator node groups are the most important parts of AFPLAN: these

node groups are used to compile the specification of the states and operators into the

AFN. In figures 6.3 and 6.4, each of the circles signify an instance of the state node

group and each of the squares, an instance of the operator node group. The only

job of the defstate and defoperator forms is to, at compile time, loop over all the

values of the variables and create a node group instance for every combination of these

values. At runtime. input nodes in the state node group are used to set up the goal

and initial states and input and output nodes in the operator node group are used

to recognize when an operator is ready to be applied and to tell an operator when it

has been selected.

88

t-l -wt 'iiii-

h~I

IS-SET

V.°

GOAL 'inhibit'
input-node

RECURSIVE
GOAL

Figure 6.5: The Network of an Instance of the State Node Group.

6.2.1 State Node Group

The state node group is instantiated with no arguments. Figure 6.5 shows an

instance of the group and figure 6.6 shows the AFL-1 definition. The purpose of the

nodes are:

e is-set - Is active when the proposition is true.

e goal - Is activated by an operator if the operator "wants to be done" and has the

proposition as one of its preconditions. It is also activated when the proposition

is specified as a final goal by the user.

o blocked - Is active when more than one operator has the proposition as one of

its preconditions. If this node is active, all operators with the proposition as a

member of their delete-lists will be blocked.

* recursive-goal - Is active when goal is active but is-set is not. When this node

is active, the want-to-know of every operator with the proposition in its add-list

will be activated.

6.2.2 Operator Node Group

The operator node group is instantiated with six arguments: the contezt-list,

precondition-list, do-list, add-list delete-list, and cost. Figure 6.7 shows the network

created by an instance of the operator node group and figures 6.8 and 6.9 show the

AFL-1 definition of the node group. The purpose of the nodes are:

89

om' %

reminder of syntax:

(make-node name &optional (Threshold *active*) (Slope *nil*)
(Rise *active*) (Saturation *saturation*))

(make-er-link from-node-name to-node-name &optional (Weight *active*))
(defgroup group-name argument-list &rest body)

the state node group:

(delgroup state)
(make-bistable-node 'is-set)
(make-node 'goal 1 1 1 *saturation*)

(make-latched-input-node 'final-goal)
(make-er-link 'final-goal 'goal)

(make-node 'recursive-goal)
(make-er-link 'goal 'recursive-goal)
(make-ir-link 'is-set 'recursive-goal *saturation*)

(make-node 'blocked 1 1 0 *saturation*)
(make-er-link 'goal 'blocked 1))

Figure 6.6: The Definition of the State Node Group.

"I9

Bli

from recursive-goal nodes inhibitory link from blocked nodes

* .- of add -list of delete-list

NOTIFY- ACCEPT-
GROUP

Wto oal d DO s.

"." . of prccuodiuon-list of add-lig and delete-list

Figure 6.7: The Network of an Instance of the Operator node Group.

ii'!i 'i want-to-do - Is activated if one of the elements in the operator's add-list is

currently a goal, and all the states in its context-list are active. When the

want-to-do node of an operator is activated, all its precondition's goal nodes
are activated.

', -* preconditions-satisfied - Is activated when all of an operators preconditions
d iare active.

•do-Is activated when both the want-to-do and preconditions-satisfied nodes

are active and the blocked node is not. The operator is ready to be applied if
of this node is active.

wn o done - Is activated after the operator is applied. The activation of this node will

deactivate all the propositions in the delete-list and activate all the propositions

in the add-list.

91

"o

are ctie ad te blcke noe i no. Th pertr sred t e plidi

(defgroup operator (fkey (context-list nil)

(precondition-list nil)
(do-list 'primitive)
(add-list nil)
(delete-list nil)

(cost 1))

(let ((delete-precond-list (intersection delete-list precondition-list))
(delete-context-list (intersection delete-list context-list)))

(make-node 'want-to-do 1 1 1)
(make-node 'preconds-not-satisfied 0 0 1)
(make-node 'context-not-set 0 0 1)

(make-node 'do I 1 1)
(make-er-link 'want-to-do 'do)
(make-ir-link 'context-not-set 'want-to-do *inhibit*)
(make-jr-link 'preconds-not-sat 'do *inhibit*)

(make-node 'done)
(make-notify-accept-group 'do-primitive)
(make-er-link 'do '(do-primitive notify))
(make-er-link '(do-primitive accept) 'done)

Figure 6.8: The Definition of the Operator Node Group (Continued in Next Figure).

4

92

4 V.

S;;Turn off "context-not-set" node if all contexts are set.

(dolist (context context-list)

(make-Jr-link '((,context is-set) 'context-not-set))

Set up links from the "want-to-do" node to all the preconditions
;; and from the preconditions to the "preconds-not-sat" node.

(dolist (precondition precondition-list)

(make-er-link 'want-to-do '(< ,precondition goal))

(make-ir-link '(< ,precondition is-set) 'preconds-not-sat))

Set up links from the "done" node to the elements in the add-list

and from the recursive-goal of the done elements to the
;; "want-to-do" node.

(dolist (add-state add-list)

(make-er-link 'done '(< add-state is-set))

(make-er-link '(,c add-state recursive-goal) 'want-to-do))

Set up inhibitory links from "done" node to the elements of the delete

;; list.

(dolist (delete-state delete-list)
(make-ir-link 'done (< ,delete-state is-set))
(make-ir-link 'done '(< ,delete-state goal)))

;; Used for blocking when element is in both precond and delete list

(dolist (element delete-precond-list)

(make-ir-link '(< ,element blocked) 'do))

Used for blocking when element is in both context and delete list
(dolist (element delete-context-list)

(make-ir-link '(< ,element goal) 'do))))

Figure 6.9: The Definition of the Operator Node Group (Continued from Last Figure).

93

V)P , -dV P. . P9 f r

-... r w'w W, r-rw-,wr w-w -r-.'.r--

A

B B

A C C

Initial State Goal State

Figure 6.10: Taking the Better Step.

6.3 Selecting An Operator

Because AFPLAN searches for subgoals concurrently, it often puts more than one

* '-,. operator in the ready state simultaneously. There are two potential problems with
applying all such operators together: a) the machinery required to execute the operators

might be incapable of serving simultaneous requests, and b) if the actions are disjunctive

(lead to the same goal), executing all of them would be wasteful.

For example, the goal "get to the airport" might set up the two disjunctive subgoals

"drive to the airport" and "take the subway to the airport ". If all the preconditions of

these two operators became active simultaneously, and the system tried to apply both

of them, there would be problems for both the above reasons.

To prevent these problems, AFPLAN only applies one primitive operator at a time

and waits for an accept signal from the outside world before proceeding. To select an

operator, AFPLAN finds the operator that will satisfy the most goals if applied. It

does this by selecting the operator with the highest activation on its (do-primitive

notify) node; the activation of this node is proportional to the number of active goals

that feed into the want-to-do node. For example. in the blocks world problem shown
in figure 6.10, moving B to C will satisfy two goals: clearing A and stacking B on C.

In this case the (do-primitive notify) node of the operator move-B-from-A-to-C

will be more active than the operator move-B-from-A-to-ground and will therefore

be selected. Note that, although this uses a completely different method than NOAH's
"use existing objects" critic, it serves the same purpose.

There are a couple ways for the system to select the operator with the most ac'i-

vated (do-primitive notify) node. In the current implementations, the host computer

makes the selection. It scans the (do-primitive notify) nodes, selects the one with
the highest value, and sends a signal to the (do-primitive accept) node of the cor-

94

CONI PT ROGRAMI ANGAGETT FTO E MBRS I Ec w M
AICIA ITELLIGEMASSCUETT L OF BLECH NOVBRIDG

UNCLASSIFIE A -TR-9 N8@148 - B5-8124 F/G12/5 NL

EhEEEEEEEEmhhE

I",'1 12.1 L _

11111 111- liii

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STAMDARDS-1963-A

b ~ ~ A -to 0 S O5 W0* :

responding operator. If the number of operators is large. or the AFN has to control

machinery directly, then a winner-take-all (WTA) network can be used instead (See

chapter 7). Such a network would be put over the do nodes so that only the one with

the strongest inputs will become active. To make this solution work, the implemen-

tor will have to take into account the transient effects that happen while the network

4. settles. By using more than one WTA group, and only placing the WTA groups over

conflicting operators, the second method could allow non-conflicting operators to be

applied simultaneously.

Both the above methods are serialization techniques - they pick a single action to

be executed out of a set of potential actions.

6.4 The Operator Cost Argument

It is often unreasonable to assume that the expense of applying different operators

is the same. Often one operator requires more energy, takes more time or is more

dangerous than another. To allow for these differences, the AFPLAN operator group

-" includes a cost argument. When two operators are ready to be applied at the same

,. time, and they both will satisfy the same number of goals, AFPLAN will choose the

one with the smaller cost.

Using the mechanism that selects the operator satisfying the most goals (discussed in

last section), it is trivial to include this feature. The inverse of the expense given by the

user (1 by default) is used as the weight between the do node and the (do-primitive

notify) node, so when the system searches for the operator with the highest activation

on the (do-primitive notify) node, it will select the less expensive operator. This

method is not very sophisticated and surely doesn't consider interactions among the

costs of the operators, but could be extended to include more sophisticated techniques.

6.5 The Do List

The do-list of the AFPLAN operator can be used to specify three sorts of actions:

primitive actions, subgoals, or functions.

Operators are primitive by default. Primitive operators send a signal to the outsideHI world when they are executed and expect a signal back when the primitive action is

completed. The command "turn hand 5 degrees clockwise" might be a primitive action

for a robot. A direct connection from the AFN to the machinery that turns the hand

and one back to the AFN could implement this action.

95

i aa

A
AA

EE
C

Initial Staw (Gul SLit+

Figure 6.11: The Side-Stepping Blocks Problem.

To allow for the kind of hierarchical planning done by ABSTRIPS [Sacerdoti 74],

AFPLAN allows the user to put goals in the do-list. This placement of goals has the

effect that the goals are only activated when all the preconditions of the operator are

satisfied, and the operator is not blocked.

Some actions require more than a single primitive action. For example, the move-

block operator for a robot is likely to require several primitive actions. The do-list of

an operator can be used to activate an arbitrarily complex set of actions. This set of

actions must be compiled somewhere in the network and is activated through a node

specified in the do-list.

6.6 Constraints

An instance of a state node group (a proposition), uses its blocked node to recognize

when it is a precondition to more than one operator in the search graph. When the AFN

is compiled, an inhibitory link is created from the blocked node of each proposition

to the do node of operators that have that proposition in their delete-list. These

links prevent the system from clobbering [Chapman85] the preconditions of other goal

operators.

Although this simple method works in many situations, it has two problems: a) the

system can only hill climb and can't take any side or back steps, and b) the system over

constrains the network by placing constraints among disjunctive as well as conjunctive

subgoals.

If there are no operators that lead further toward the goal, the system described so

far will become interlocked. In the blocks world, with three blocks, figure 6.11 shows

the only case where this is a problem. To clear B so it can be placed on C, A must

be removed from B. This action is a side-step since it requires the undoing of one goal

96

K il'

A

S C B

D C

AA h
Initial State Goal State

Figure 6.12: The Double Side-Stepping Blocks Problem.

to achieve another. As Phil Agre puts it, it's like getting to the refrigerator door with

milk in one hand and orange juice in the other.

To get over this problem, AFPLAN recognizes when it is interlocked by noticing

both that no operators are active, and that goals still need to be achieved. When

AFPLAN recognizes it is interlocked, it raises the threshold on all the locked nodes by

supplying a controlled negative input to those nodes. This will ahiow the application of

operators that only delete a single precondition. Although this method works with the

three blocks world, it is not a general solution because it doesn't address the problem of

selecting which side step is least destructive. For example, figure 6.12 shows a problem

in which two side steps can be taken. The system can either put B on C, or C on the

ground; both achieve one goal at the expense of another.

AFPLAN happens to take the right step in this problem but only because the

operator "move x from y to z" is set with a larger cost than "move x from y

to-ground".

The second problem with the blocking method is that it over constrains the plan;

in particular it can cause disjunctive as well as conjunctive goals to block each other.

This is rarely a problem in the blocks world because disjunctive goals rarely interact,

but in other worlds it can be a serious problem. This over constraint is inherent in the

system and can only be overcome by searching a single disjunctive goal at a time. In

the network generated by AFPLAN, there is no way of telling at a state whether two

signals are coming from conjunctive or disjunctive subgoals. The problem is related

to the "find everybody who is their own father" problem mentioned in [Hillis81] and
[Fahlman83 and a node limited message state network (discussed in chapter 2) is

required to solve it. Fahlman called such networks "painted tokens" networks.

97

6Nl 7. **j.- III A-I

Another problem AFPLAN has with disjunctive subgoals is that once the system

starts applying operators in one disjunctive subgoal, nothing deactivates the search for

operators in other branches of the disjunctive tree. This problem is a problem with
AFPLAN and, unlike the previous problem, is not due to any limitation imposed by
AFNs. There is a relatively easy fix that prevents the problem. This fix requires an
extra signal that travels up the tree of goals. When an operator is applied, it activates
this signal, and the signal travels up the tree turning off branches of disjunctive subgoals

as it passes.

6.7 Network Required

An obvious question to ask is, how much network (how many links) is required to
implement a plan in AFPLAN? In particular, if a variable can have many values, won't
a large amount of network be required to include an operator or state node group
instance for every permutation of the variable values?

The three blocks problem shown in figure 6.1 requires 377 links, the same problem
with four blocks requires 957 links. Neither of these are coming close to the practical

limit of 1-4 million links discussed in chapter 8. A blocks planner could plan with up
to 200-300 blocks within the practical limit or today's computers, and probably with
10,000 blocks within the next ten years. Considering that humans will have difficulty
planning with more than 10 blocks, these limits are certainly not unreasonable.

Although the network compiled for the blocks world used the three specific blocks,
A, B and C, the same networks could be used for stacking any sorts of objects. Instead
of A, B and C, we could have used this-object, that-object and the-other-object
when we compiled the network. Then at run time when we come across three objects

to stack, we somehow bind each of those objects to to the this-object, that-object

and the-other-object. This binding can either be done by the host, or internal to the

network.

6.8 Conclusion

AFPLAN shows how a planner can be implemented on static concurrent networks
with AFL-1. The planner has many of the capabilities of previous planners but has

a couple limitations. One limitation that seems to be inherent in the AFN model is
that it is hard to concurrently search for disjunctive and conjunctive subgoals without

either under-constraining the conjunctive subgoals or over-constraining the disjunctive
subgoals.

98

S6 I

Chapter 7

Mutually Exclusive Groups

A powerful abstraction of activity flow networks and, more generally of connectionist

networks, is the mutually exclusive group of nodes. As one element is further activated

in such a group, the other elements tend to be inhibited. Some form of such groups can

be found in the majority of work on connectionist models. In general, mutually exclusive

groups can be cheaply implemented, and can take full advantage of concurrency. This

chapter discusses several types of mutually exclusive groups, shows how they can be

cheaply implemented, and discusses where they can be used.

In a group of mutually exclusive nodes, the element, or sometimes elements, with

the strongest input stay active while the elements with lower inputs are inhibited. As
inputs, mutually exclusive groups can use information from many different sources.

Figure 7.1 shows an example of an mutually exclusive group. The group uses color,
shape and size as inputs to decide on whether the fruit is an apple, banana or straw-

berry. Using this information, the group will settle on one of the three fruits. Because of

their properties, mutually exclusive groups present a good mechanism for interpreting

input, focusing on a limited set of things, or arbitrating for a limited resource.

Many recent systems developed using static finite message state (FMS) networks
use mutually exclusive groups extensively. In vision systems, they are used to select

characters [Rumelhart8l], to select a frame of reference [Hinton85], and to interpret
visual features FeldmanSS]. In natural language systems, they are used to choose
the syntactic role [Cottrell85] and semantic meaning [Waltz85] of a word, recognize

the syntactic form of a sentence [Selman85], and select words for language production

[Dell85]. In logical reasoning systems, they are used to select a matching for a uni-
fication algorithm [Ballard84], and to choose among clauses and rules in an inference

system [Touretzky85J. For semantic network systems, they are used to decide on the
type of an object [Shastri85]. Minsky [1986] uses such groups as a large part of his

theory of mind.

Some of these systems use distributed representations [TouretzkyS5]. With dis-
tributed representations, each object, such as apple, is represented by a pattern of
activity in the network rather than by a single node. In these systems, mutually ex-

clusive groups do not select a single node but rather are only stable in patterns that

99

"WV 1111
'4~~R!1 gp"'WY/('',

Red Yellow Round Cylindrical La~rge Small

mutually exclusive &oup

Figure 7.1: An Example of a Mutually Exclusive Group.

represent a single object.

Although the intuitions behind mutually exclusive groups are well understood, their

use is often haphazard and the suggested implementations often impractical. Many dif-

ferent types are being used, each with a different function; the differences in function

include whether the elements completely inhibit each other, and whether there is hys-

teresis. The implementations discussed often suggest that an inhibitory link is used

between every pair of nodes of the collection; such implementations requires N' links

and are therefore impractical for large collections.

In AFL-1, mutually exclusive groups can be implemented with the group abstrac-

tion introduced in chapter 4; groups of this kind will be called ME-groups. This chapter

defines five different types of ME-groups and shows how each can be implemented in

AFL-1. It then discusses four ways in which they can be used.

7.1 Five Flavors Of Mutual Exclusion

This section categorizes ME-groups into five flavors: winner-take-all groups, winner-

take-all groups with hysteresis, contrast-enhancement groups, controlled contrast-

enhancement groups, and controlled contrast-enhancement groups with fatigue.

Each of these groups is useful for a slightly different purpose so they should all be

present in an activity flow programming environment. Sections 7.1.1 through 7.1.5 de-

fine the flavors and for each flavor, show an implementation using the AFL-1 primitives

of a two member group. Section 7.1.6 shows how n element ME-groups of any of the

flavors can be implemented using 0(n) links.

100

MM SRI' Wr

Numhcrs isidc Nodc Reprewsnt

"lbrcshold Risc: Slope: Sauiir.tion

Inputs-I Inputs-2

Figure 7.2: Implementation of a Two Member Type 1 ME-Group.

7.1.1 TYPE 1: Winner Take AU

DEFINITION

A winner-take-all group activates the member with the highest input and completely

inhibits all the other members. If at any time another element starts receiving a

greater input than the current winner, it will become active and inhibit the other

nodes (becomes the winner).

IMPLEMENTATION

Figure 7.2 shows an implementation using the AFL-1 primitives of a two element

winner-take-all group.

With this implementation, the winner-take-all group suffers a time delay when

switching between one winner and another. The delay is proportional to the difference

in input activity; both nodes are partially active during the delay. An advantage of

such a toggling delay is that random noise or transients will get damped out.

A disadvantage of the given implementation is that when both elements are off, and

receive the same input at the same time, they get stuck in an oscillating state. One

way to solve this problem is to split the inhibitive link in two, each with a weight of

1/2, and delay one of the branches by a cycle. This method requires two extra nodes

and four extra links and means that in the case of equal inputs, there will be equal

outputs.

101

USES

Winner-take-all groups are used when a single member has to be selected from a

group of contenders and all the other members have to be completely inhibited. Such

an effect is useful when arbitrating the use of a limited resource.

For example, a winner-take-all group might be useful for controlling a heuristically
driven elevator. Such an elevator could be designed to have three commands to control
its motion, stop, move-up and move-down; a winner-take-all group would be wrapped
around these commands since the elevator can only obey one at a time. A set of
heuristic rules could contribute as inputs to this group. For a multi-elevator building,

the heuristic rules might include:

" Keep the elevators on different floors.

* Spread elevators evenly over the floors.

" Keep one elevator on the ground floor.

. Give priority to the direction where more people are waiting.

" Don't stop at too many floors.

* Keep as many elevators going up as coming down.

Using the heuristic rules as input, an ME-group for each elevator would select one

of the commands stop, move-up or move-down.

People use some sort of winner-take-all process to select a single word when
speaking. If one were to make the muscle movements for several different words, the

result would be incomprehensible.
Winner-take-all networks have the property that they easily change there decision

when two elements have similar inputs. This property is sometimes undesirable since

it might cause an elevator to get stuck fluctuating between two floors, or cause people

to change the word they are saying half way through. To keep an ME-group stable in
face of ambiguous inputs, the group can be implemented with hysteresis.

7.1.2 TYPE 2: Winner-Take-All With Hysteresis

DEFINITION

A winner-take-all group with hysteresis is a winner-take-all group with the prop-

erty that a node can only become the winner by receiving an input of some thresh-

102

,#wJmI ' '' f (' I/W w •

"l',gling-'lihrcshold = .2

Inputs-I Inputs-2

Figure 7.3: Implementation of a Two Member Type 2 ME-Group.

old above the current winner's input. This threshold will be called the toggling-

threshold.

IMPLEMENTATION

Figure 7.3 shows an AFL-1 implementation of a winner-take-all group with hystere-

sis. The toggling-threshold is set, and is equal to, the threshold on the individual

nodes. By making the threshold different on the two nodes, one can make an asymmet-

ric toggling-threshold. This asymmetry can be used to create ME-groups in which

some states are more stable than others.

USES

The hysteresis of the TYPE-2 ME-group is useful when a stable and discrete decision

has to be made. Many of us have come to an exit on a highway without knowing
whether to exit. Those of us with little hysteresis in decision making are the ones who

have ended up in the grass between the exit and the highway.

7.1.3 TYPE 3: Contrast Enhancement

DEFINITION

Unlike a winner-take-all group, a contrast-enhancement group does not com-
pletely inhibit the losers but rather just enhances the contrast among the activations of

the members. This means the activity ratio two members of the group will be greater

than the input ratio of those members. The contrast-factor specifies the amount the

103

Contrast-+actor = .2

Inputs-i Inputs-2

Figure 7.4: Implementation of a Two Member Type 3 ME-Group.

contrast ratio is increased by.

IMPLEMENTATION

Figure 7.4 shows an AFL-1 implementation of a contrast-enhancement group. In

this implementation the contrast-factor is set by the weights on the links. By in-

creasing this weight, the contrast is increased. A contrast-factor of 1 implements a

winner-take-all network; a contrast-factor of 0 will create no inhibition between the

members. For this implementation, the following equation gives the output in terms of

the inputs and the contrast-factor.

Output = (Input - contrast-factor * Other-input) /

(1 - contrast-factor**2)

Figure 7.5 shows the ratio of the outputs of two members in terms of their input
ratio for three different contrast-factors.

USES

Contrast-enhancement groups have applications in problems that require mutual

exclusion but do not require that the losers be completely inhibited. Applications

requiring recognition or interpretation internal to the system can usually take advantage

of contrast-enhancement groups to allow for partial activation of several different

interpretations. For example, your home robot might be programmed to pick up your

paper. When it goes to the door mat and reaches down and feels a round object, it

probably does not want to immediately settle on the interpretation that it is your paper

104

.8

OUTPUTs contrast

RATIO .6 -actors
A~ - .4

.6
.2

.2 .4 .6 .8 1

INPUT RATIO

Figure 7.5: Graph of the Contrast Enhancement of a Type-3 ME-Group.

and inhibit all other possibilities. If it brought you a screaming cat, you might not be

to happy. In natural language understanding. contrast enhancement might be helpful

since the information needed to disambiguate a word often comes after the word itself.

In this case all interpretations should stay partially active.

7.1.4 TYPE 4: Controlled Contrast Enhancement

DEFINITION

A controlled contrast-enhancement group is a contrast-enhancement group in

which the contrast-factor is controllable from within the network.

IMPLEMENTATION

Since the AFL-1 primitives do not support multiplication of signals, the implementation

of controlled contrast-enhancement groups is expensive. To implement them effi-

ciently, an extra node type that multiplies as its combining function, can be added (see

section 3.8). Figure 7.6 shows an implementazion using the multiplication nodes. This

implementation has the same properties as the implementation of the fixed contrast-

factor, contrast-enhancement group, except that the contrast-factor can now be

controlled by the cf-input. This signal can come from anywhere in the network.

105

MOM ~ *w

cf-input

multInput-2

Figure 7.6: Implementation of a Two Member Type 4 ME-Group.

USES

In practice it is useful to initially allow many conflicting interpretations so all possi-

bilities can get a fair footing, and as the computation proceeds, to exclude all but one

interpretation. The controlled contrast-factor can be used to achieve this effect; early

in an interpretation the contrast-factor can be kept low and then increased either

when the system decides it needs a single interpretation or when the interpretations

become stable. Such a mechanism is used in [Hinton85b] for character recognition - he

calls it a competition function and uses a schedule of increasing competition to settle

down onto a single interpretation without making serious errors. Similar methods are

used in the work on simulated annealing [Hopfield82, Kirpatrick83. The difference be-

tween these methods and controlled contrast-enhancement groups is that the later

are controlled from within the network while the former are controlled from outside.

7.1.5 TYPE 5: Controlled Contrast Enhancement With Fatigue

DEFINITION

The final type is a controlled contrast-enhancement group in which the members

with high activation fatigue over time. In such a group, no winner (member with the

highest input) will stay a winner for a long time.

106

OI

IMPLEMENTATION

Such a mechanism is again expensive to implement using the AFL-1 primitives but
would be cheap with some extra capabilities built into the primitives. If fatigue was

built into the primitives then the implementation could be the same as shown in the last
section with some fatigue parameter on the node. To implement fatigue the primitives
would have to maintain state so they can keep a measure of how long they have been

active.

USES

Fatiguing is used to prevent systems from locking up. In single settling systems of the
sort described in [Hopfield82] and [Ackley85J, the network is only needed to settle into
a single interpretation. An external force is then used to reset the network to prepare
it for the next interpretation. In contrast, self supporting systems with no external

control must be able to reset themselves; one possible way of doing this is by using
ME-groups that fatigue. In such a system, any settling will only be stable for some
amount of time. This time could be set as a parameter when programming the network.

7.1.6 Implementing Large ME-Groups

For ME-groups to be practical, the number of links they require must be linear or

close to linear in the number of members of the group. This section describes an
implementation that can be used with slight variations for all the flavors of ME-groups
described above. For groups with N members, this implementation requires 7N links
and 3N nodes. A similar O(N) network is discussed in [Koch841, but this network can

only be used for winner-take-all groups.

The implementation is constructed using a tree structure in which the group of
three nodes shown in figure 7.7a is used at each vertex of the tree. This group of three
nodes has the property that the output activity along any of the three directions is
equal to the maximum of the inputs along the other two directions. Figure 7.7b shows
a four member winner-take-all network, built with such a tree. The signal received
at each leaf of the tree is the maximum activation of all the leaves of the tree excluding
itself. This can be proved inductively by showing that it is true for a tree of two leaves,
and that if it is true for a tree of 2" leaves then it is true for a tree of 2" ' leaves by

putting two subtrees together.

Since at each member of the ME-group, the maximum of the other members is
available, each member can treat that signal as if it came from a single other element.

107

-,. QQ1 -

* :~. ~R PRINIE

,mtn-treecnode

r rRFE-NODE-2 TREE-NODE3

Ieteend I I ete-nd ru

NODE-I NODE-2 NODE-) NOI)R4
sum-node sum-node sum-node sum-node

V B)

Figure 7.7: Implementation of Large ME-groups.

108

,w 3affi

This implementation as N - oo requires 7N links and 3N nodes. Several other O(N)

implementations exist.

7.2 Uses Of ME-Groups

Since there is not a one to one map between types of ME-groups and their uses, this

section summarizes the uses. The uses are broken into four categories, output serial-

ization, internal selection, internal serialization and buffers.

7.2.1 Output Serialization

Often an output, or other resource, of a concurrent system can only process a single

request at a time. If many parts of the system ask for this resource at the same time,

the requests have to be serialized. Two examples of such outputs were discussed in

the uses of winner-take-all groups, one for an elevator controller and one for natural

language production. Since the resource of concern can only process a single request,

the ME-group used must be some sort of winner-take-all group.

In the Concurrent Inference System (Chapter 5), serialized output is used for ques-

tion asking. The section on focus (5.10) discusses how an ME-group can be placed

over all the ask nodes so that only one is asked at a time. In AFPLAN (Chapter 6),
serialized output can be used to prevent simultaneous commands from being sent to a

device that can only perform a single action at a time.

7.2.2 Internal Selection (Interpretation)

People have a remarkable ability to select an interpretation from a large group of am-

biguous possibilities when aided by a large amount of contextual information. One

way to implement the part of the interpretation system that chooses which interpre-

tation is best might be to place ME-groups around conflicting interpretations. If the

interpretation is internal to the system, the system does not have to completely inhibit

secondary interpretations. By internal I mean that no external commitment, such as

muscle movement, is directly controlled by the interpretation. Because of this, the

implementation can use a contrast-enhancement group.

A common use of such interpretation ME-groups is to select a single value of a

parameter/value binding. For example, one may want to decide if a ball is red, blue,

yellow or green; whether the day is Monday, Tuesday, ... , Sunday; or whether the

character is 'a', 'b', ... 'z'. The Concurrent Inference System (CIS) uses such selection

4 109

Concurrent Network

Symcn Network

Figure 7.8: The Mechanism of Internal Serialization.

to chose a value for each parameter (see section 5.5). Some of the Focusing techniques

proposed for CIS also use internal ME-groups.

7.2.3 Internal Serialization (Attention)

Many researchers agree that even though the brain process must have significant con-
currency, there seems to be a serial aspect to the highest levels of thought [NewelI72,

Treisman82]. This part of thought is often called attention. How can the concurrent

architecture of the brain support this apparently serial processing? One possible way
is to use some sort of serial path in which whatever is presently "in attention" has to

go through - such serialization will be called internal serialization.

Implementationally, internal serialization can consists of selecting a single member
from a large group, passing the selected element through a single serial path, and using

the output of the path to feed back into the system. A diagram of this mechanism is

shown in figure 7.8. What Vitosky calls private talk- the words we say to ourselves when
we think - might be supported by some form of internal serialization. Like external

serialization, internal serialization can be used to allocate a resource, but instead of
being an external resource, it is the network of the brain itself.

There are two important differences between internal serialization and internal se-
lection. First, in internal serialization there is only one group (path) in the whole

110

WIN

system, while in selection there can be many selection groups. As a consequence, the

internal serialization group is very large while the selection groups are usually small.

Second, internal serialization is used for high level functions to be executed serially
while selection is usually used for low level functions - interpretations.

The inference mechanism of Touretzky [851 uses a form of internal serialization.
It forces only a single clause to be active in each of two clause groups. These clause
groups are in effect a serial path. The word-society, pro-neme, k-line, polyneme,

pre-nemne, word-society loop discussed by Minsky :Minsky86l also uses a similar

mechanism.

7.2.4 Registers And Buffers

A register is a slot into which one of a finite set of codes or symbols can be put. ME-
groups also have this property: they allow one of a finite set of nodes to be active at

a time. A register made from an ME-group can be more flexible than a conventional
register since it can allow partial activation of more than one symbol, can easily increase
in size as more elements are added to the group, and can vary in size within the system

so that each register is only as big as it has to be.
A chain of the ME-group registers can be used as a buffer. Suz h a buffer could be

used as the feedback path discussed in the section on internal serialization. It can also

be used to buffer the last few sounds one hears, or some information about the last few~visual inputs. Pass gates can be used to move the values through the ME-group buffer.

The implementation of such a buffer is simple.

7.3 Problems With ME-Groups

Although ME-groups are useful abstractions they do not seem to accurately model
the general interactions among thoughts and interpretations of the human brain. Like
any modularization technique, ME-groups impose symmetries and boundaries which

are not natural. For complex systems, it becomes hard for the implementor to decide
which concepts belong in which group, and what groups to use. It also becomes hard
to take into account the interaction among ME-groups.

~111

'M40

Chapter 8

Implementation

This chapter discusses issues involved with implementing an AFL-1 network-processor.

It describes the current implementation, discusses general issues of implementing large

fine-grained static networks, and suggests better hardware for such networks. Before

the current implementation on the Connection Machine (CM) is discussed, section 1.1

gives a short outline of the CM as background, and section 1.2 describes a conceptual

implementation.
The implementations brings out two general issues regarding the design of finit,

message state (FMS) networks (see section 2.2 for definition). Firstly, the cost of large

networks is a function of the number of links rather than the number of nodes. Secondly,

links with some locality (links between nodes that are close) are much cheaper than

random links. Many researchers have counted nodes instead of links in their analysis

of the cost of FMS networks [Feldman8l, Touretzky85], and it is unclear that their
conclusion are still valid if links are counted instead. Section 1.5 discusses some of

these issues.

Although the CM is good for experimenting with AFLs, it is more general and

therefore costly (time, space and price) than needed. In particular, it is hard to take

advantage of local communications on the CM. Section 1.6 suggests some changes that
can be made to the hardware so that larger less expensive networks can be implemented.

In AFL-1 the efficiency of the network-processor is defined in terms of the number

of values passed through the links per second (LIPS). This measure is calculated by
dividing the number of links in the network by the time taken by an afi-step (see

section 3.5). Table 1.1 shows an estimate on the maximum number of LIPS for various

computers.

8.1 The Connection Machine

ON'. This section gives a brief overview of the Connection Machine (CM); a more detailed
description can be found in [Hillis85], and [Christman84].

* Processors - The CM has a large number of very simple bit serial processors. The

current Thinking Machines Corporation version has 64K processors and the pro-

112

0%

= IMPLEMENTATION RATE

"Symbolics 3600 .03 mega-LIPS

'-JmV"x-780 .1 mega-LIPS
Cray-I 5 mega-LIPS

Connection Machine 75 mega-LIPS

Table 8.1: Approximate Number of LIPS for Various Computers.

OPERATION RUNNING TIME
Single Bit Logical Operation I time unit

32 Bit Floating Point Multiply 1000 time units

Sending a 32 Bit Message From Every Processor 800 time units
The AFL-1 Node Function 100 time units

The AFL-1 Binary Combining Functions 10 time units

Table 8.2: Relative Running Times for Various CM Functions.

posed General Electric/Massachusetts Institute of Technology version will have
256K processors.

" Memory - Every processor has approximately 10' bits of its own memory.

" Instructions - The CM is a single instruction multiple data machine (SIMD). Each

processor only listens to the instruction stream if its context-flag is set.

" Communication - There is a general routing mechanism which allows every pro-
cessor to send data to any other processor by having or computing a pointer to
the other processor.

Table 1.2 shows the relative running times for various functions on the TMC Con-
nection Machine.

8.2 Simple Conceptual Implementation

Although the following implementation is inefficient, it is a good way of picturing
how an AFN works since it is simple to understand and does not dependent on the

113

4N

specifics of the Connection Machine. The implementation is similar to those suggested

in [Fahlman79J, [Christman84 and [Hillis85].

Each processing element is one of four types: a node processor, a link processor, a

fan-in processor or a fan-out processor.

Each node processors is connected to (has a pointer to) a single fan-out processor.

The fan-out processors have pointers to two other processors which are either other

fan-outs or links. When a fan-out processor receives a value, it performs the spreading

function on it (a simple copy in AFL-1), and sends it to the two outputs. By using the
tree of fan-out processors, a single node can spread its value to an arbitrary number of

link processors. This tree can be kept balanced by the compiler.

When the nodes send out their values, these values propagate through the fan-out

tree until they reach a link processor at which point they stop and wait. When all

links have received their inputs, they all perform the internal-link function (multiply in

AFL-1), and send the result to their output: a fan-in processor. Each fan-in processor

has two inputs and a single output. The fan-in processors wait until they have a value

in both of their input boxes, run the combining function on the pair of values (MIN,

MAX or SUM in AFL-1), and send the result to their output.

When the links send out their values, these values propagate through the fan-in

trees getting combined along the way until they reach a node processor. When all node

processors have received their values they perform the node-function on this value and

their internal parameters (Threshold, Slope, Rise and Saturation) to derive their output
value. The cycle is repeated for each afi-step. Figure 1.1 shows an example of the

layout of the processors.

The problem with using this implementation is that it requires several message

cycles for every aft-step. If some nodes have large fan-ins or fan-outs, the number of

message cycles can be large and the nodes with small fans spend most of their time
doing nothing. The next section describes an implementation that overcomes these

problems.

8.3 AFL-1 Run Time Implementation

*Sending messages on the CM is expensive. This section describes an implementation

of AFL-1, which by arranging the links so that it can take advantage of a class of

5algorithms called scans, only requires a single routing cycle per aft-step. Unlike the

previous implementation the time required by an afi-step is independent of the size

of the largest fan-tree. Before proceeding, this section will discuss how the CM can

114

N... ,11
I. r

LINK PROCESSORS

FAN-IN PROCFESSORS

Excimu InputInhibittwy Input
NODEF PROCFSOR

FAN OUT PROCFSSORS

91 LINK PROSSORS

Figure 8.1: An Example Layout for the Simple Implementation of AFNs on the Con-

nection Machine.

simulate more processors than actualy exist, and will describe the scan algorithms.
With a few changes, the implementation described can be used for almost any finite
message state network.

8.3.1 Virtual Processors

Since the number of links in an AFN might be larger than the number of processors
in the CM, there must be some way to include more links than processors. The CM
supplies an abstraction called the tvrtuW procesor (VP) for this purpose. A VP rather
than being an actual processor is a piece of memory within a processor. There can be
a large number of VPs in the memory of each processor. When a operation is sent to
the CM at run time, the physical processors loop over each of the VPs executing the
operation. For operations on local memory (within a processor), this will cause a linear
slow-down of execution time with the number of VPs. For operations which require
communications, this slow-down is generally non-linear.

8.3.2 Scan Operations

The scan operation, sometimes called initial prefix, takes a binary associative oper-

. 1' C115

R 11W
1

0 = I'i

Processor Nuaber 0 1 2 3 4 5 6 7 8

Data 1 1 4 6 3 1 2 5 2 4

Result of Sum Scan: 1 6 11 14 15 17 22 24 28

Figure 8.2: Example of Scan Using Sum.

ator ® and an ordered set Ao, A1, ..., A,-I of n elements, and returns the ordered set

Ao, (Ao a A,), ..., (Ao 0 Ai ® ... ® A,,-.). Figure 1.2 shows an example of the result of

the scan operation using the sum operator.

Scans run in O(log n) time on n processors connected in a tree [SchwartzSO, Fitch83

and since there are trees embedded in the CM, this bound is valid for the CM. If VPs

are used one can show that the required time is O(r + log p) where r is the VP ratio

(the number of VPs per physical processor), and p is the number of physical processors

[Kruska185]. This means that a scan with a log p VP ratio only requires about twice as

long as a scan with a VP ration of 1.

On the CM, scans using simple operators such as or, and, integer sum, and

integer maximum typically run faster than a message cycle. This is because the CM

is not a complete hypercube or butterfly but is a complete tree. As the number of VPs

increases, the ratio of running times gets larger since the router slows down worse than

linearly while scans slow down with a small linear constant.

Segmented Scans

The AFL-1 runtime routine uses a flavor of scans called segmented scans. These

scans work on segments of the CM. A segment is a set of adjacent processors whose

first processor is marked by some bit in its memory. Figure 1.3 shows an example of 8

processors broken into three segments.

Segment scans only scan over the processors within their own segment. Since they

are a special case of general scans they still only require O(log n) time. The AFL-

1 runtime routine uses four operators in its segment scans, addition, maximum,

minimum and copy. Figure 1.3 shows the result of these scans on some example

data.

116

1-1

Processor Number: 0 1 2 3 4 5 6 7 8

Segment Flag 1 0 0 1 0 0 0 1 0

Data 1 4 6 3 1 -2 5 2 4

Sum Scan : 1 5 11 3 4 6 11 2 6

Max Scan : 1 4 6 3 3 3 5 2 4

Kin Scan : 1 1 1 3 1 1 1 2 2

Copy Scan 1 1 1 3 3 3 3 2 2

Figure 8.3: The Scan Functions Used By AFL-1.

8.3.3 The Implementation

To take advantage of the scan operations, the AFN is laid out on the CM as shown in

figure 1.4. Within the order of the CM processors, each AFL-1 node follows all of its

input links and is followed by all of its output links.

The output links each have their weights and a pointer to the other end of the link

(one of the input links of another processor). An aft-step then requires the following

simple routine:

all output links : Segmented Copy Scan the node output-value.

Do the link function.

Send result to other end of link.

all input links : Segmented Sum Scan.

Segmented Max Scan.

Segmented Min Scan.

all nodes : Do the node function.

This routine consists of four scans (it can be reduced to three by doing MAX and

MIN together), one message cycle, and the node and link functions. Figure 1.5 shows

the running time of the routine for several VP ratios.

For many tasks, with the running times shown, it is practical to have up to 4 million

links in a network. With 4 million links, the system could still run 10 aft-steps per

second.

117

I
b'

PROC
NUM

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17

OW 01 <>0 0 I <0W WlE7Elm.

SNODEO NODE I NODE2

C>INPUT LINKS

WOUTPUT LINKS SEGMENT

0 NODES BOUNDARY

Figure 8.4: Node and Link Layout on the Processors.

20-

15

AFL-STFiP
TIMEi

(in msccs) 10

0

5-
0

00

1 2 4 8 16

VP RATIO (x (4,000 to gct imax number of links)

Figure 8.5: Running Time of an Aft-Step for Various VP Ratios.

118

04

Processor luaber: 0 1 2 3 4 5 6 7 8

Active Flag : 1 0 0 1 0 0 0 1 0

Data : 4 6 3 1 2 5 2 4

Result of Pack : 1 3 2 X X X X X X

Figure 8.6: Example of Pack Operation.

8.4 Taking Advantage of Inactivity

Typically only a small percentage of an AFN is active at any given time. This section

briefly outlines a method for taking advantage of this inactivity by only processing the

nodes that are active. The method achieves a form of load balancing by spreading the

active nodes evenly over all the processors. The method only works when using virtual

processors and requires some overhead. It is not clear at what percentage of active

nodes the method becomes practical to use.

The method uses an operation called a pack, which takes all the active elements

and packs them down to the bottom part of memory. Figure 1.6 show the result of

a pack operation. Packs run in O(logn) time on a complete butterfly or hypercube

[Batcher74] and run in O(r x (log r + log n)) for a VP ratio of r. The CM does not have

a complete butterfly across the machine but it does have one within each chip. A chip

consists of 16 processors.

To only process the active nodes, we can pack the nodes down to the lowest rows

of virtual processors (VPs) so that every processor in the machine has approximately

the same number of active VPs. Now when the CM loops over the VPs, it only has to

loop over a small percentage to catch all the active ones. Figure 1.7 gives an example

of such a packing. Since there is only a butterfly per chip, we usually only pack within

the chips. Packing off the chip is significantly more expensive but can be done when

the load on different chips becomes significantly unbalanced.

The majority of the time taken by an aft-step is spent executing the routing cycle.

The following method only packs before routing; it might be worthwhile packing at

other times but the gains will be less significant. The method uses basically the same

119

ill! V

Virtual 3 H BEFORE PACK
Vrul2 F G

Processor 2
D E

Number I A B
0 A B

0 1 2 3 4 5 6 7
Physical Processor Number

Virtual AFTER PACK

Processor
2

Number 0 A B C D E F G H

0 1 2 3 4 5 6 7
Physical Processor Number

Figure 8.7: Packing on Chip to the Lower VP Rows.

algorithm as described in section 1.3, but before the send instruction (after the link

function), all the links with the same value as in the previous aft-step are deactivated.

The remaining active links append their value to the destination address required by

the send cycle and pack them across the processors. The message cycle will now only

loop over a subset of the VP banks. If the percentage of active processors is low, this

method could save a significant amount of time.

The method has the drawback that it is no longer possible to compile the connections

into the router since the source of each message will change between afi-steps. No

experimentation has been done, so it is not clear where the trade off lies. There are

many variations to the method outlined and it is useful for a much more general class

of algorithms than discussed in this thesis.

8.5 Counting Links or Nodes

Both the implementations of the network-processor discussed in this chapter, and

all other implementations I have tried on the CM, have had costs proportional to the

number of links rather than the number of nodes in a network. Is this an artifact of

the CM? Most likely not - the reason behind the cost of links has a strong theoretical

foundation that is independent of any particular machine. This is true even if the links

are completely passive (do not require a multiplication).

120

As was first notice in the field of 2-dimensional VLSI layout [Thompson79, Leiser-
sonSO, Lipton8l, Valiant8l], and later extended to the simulation of arbitrary networks
on a fixed network [Bhatt84, Leiserson85], the cost of the processing elements is in-

significant as compared to the cost of communications for all but the a few trivial
networks, such as trees and 3-d meshes. Cost is measured as a function of the area or
volume of the circuit required to implement or simulate a network, and the time taken

to run it.

In particular several theorems were derived that give lower bounds on the area
or volume required to simulate various networks. These theorems show that for all

but trivial networks these bounds are greater than linear in the the number of nodes,
and that for many networks, such as hypercubes., are proportional to the square of
the number of nodes. These bounds are based on the assumption that the amount of
information that can cross a boundary is proportional to the area of that boundary

and do not depend on any properties particular to VLSI layout.

As concerns simulating activity flow networks, two important observations can be
abstracted from this work: links are expensive and the locality of nodes is important.

These two observations have been neglected by many researchers when analyzing the
cost of various connectionit networks.

Feldman 1811 discusses a method for implementing a dynamic binding scheme for
connectionist networks that requires 0(n3/2) instead of the O(n2) required by a more
obvious scheme. If he had counted links instead of the nodes, he would have found that
his method is no cheaper than the simple O(n3) method.

Touretzky and Hinton (Touretzky85] show how a distributed implementation of
a production system on a connectionist network is much cheaper than a grandfather
cell (local) implementation. Their calculations only consider nodes and ignore links
and issues of locality. Each node in their network requires considerably more links
than needed in a local scheme, and the links are made randomly and are therefore

much harder to collect into local groups needed for local communications. With these
considerations, it is not clear that the distributed implementation is cheaper.

When programming with AFL-1 it is easy for the compiler to take advantage of
locality for two reasons. Firstly, the use of node groups collects nodes into local ar-

eas. In general each node group communicates more within itself than to any other
node group. Secondly, many of the predefined abstractions supplied by AFL-1, such
as the fan-in, fan-out, and mutual-interaction groups defined in section 4.5, are

implementable on commutative trees. Commutative trees are particularly cheap to im-
plement (combining non commutative trees can be expensive as shown by [Lipton81]).

121

0/,ternl Interface

2 chonnels

-- prOCessor

Figure 8.8: A Fat-Tree [Leisersong5l.

This is not posed as evidence that local representations are cheaper to implement
but rather it suggest that one should be careful about the distribution of connections.
It might be reasonable to have distributed representations in which single concepts
(concept is intentionally left vague) are distributed over some small volume rather

than over the whole network.

8.6 Improvements to the Hardware

The Connection Machine is good for experimenting with AFLs but is more general and
therefore costly (time, space and price) than needed. A major problem with the current
design is that it is hard to take advantage of locality: in the CM, sending a message 42
processors away costs approximately the same as sending one 50,000 processors away.

As mentioned in the previous section, it should be considerably cheaper to implement
networks with locality then those without.

The source of the problem in the CM is that it uses a connection topology, a
hypercube, that is more powerful and costly than needed. It is therefore impractical to
build networks with a large number of processors (by large we mean > 1,000,000). An
n node hypercube has the property that whichever way you cut it in half, n/2 wires

will cross that cut. This requires an extremely high bandwidth. To limit the cost of
the CM, the CM only has a hypercube node per chip (16 processors). Because of this,

the router must be multiplexed 16 ways.

Better networks for activity flow networks are the so called volume universal net-
works [Leiserson85], such as fat-trees [Leiserson85, Greenberg86]. Figure 1.8 shows a

diagram of a fat-tree routing network. A fat-tree resembles a regular binary tree ex-
cept that the bandwidth increases as you go up the tree. To be volume universal, the

122

bandwidth must increase by a factor of 2' / s at each level.
Another change that would allow faster execution of AFNs is for the hardware to

take better advantage of static routing. The CM is optimized for dynamic routing and
does not run static routing considerably faster. If a machine is optimized for static
routing it is possible to greatly reduce the propagation delay of a routing cycle.

If implemented, these changes coupled with advances in technology are likely to
speed up the running time of AFNs by two or three orders of magnitude in the next
10 years. This would make it practical to run networks with over a billion links.

123

Chapter 9

Conclusion

A language was presented that allows the hierarchical description of networks of very
simple computational devices. The language, AFL-I, is similar to many circuit design

languages, but unlike those languages, the networks AFL-1 creates are designed to be
simulated not etched into silicon. Because the primitive network elements are simple

and only a few different types exist, it is cheap and easy to simulate the networks on
massively concurrent SIMD machines such as the Connection Machine.

Two tasks were programmed in the language: a rule based system (CIS), and a

planning system (AFPLAN). An analysis of the CIS showed that much of the same
functionality can be achieved using the network model and the AFL-1 language as
is found in existing rule based systems such as MYCIN. Because the networks are

massively concurrent, CIS has the potential of simulating many more rules in real time
applications than serial production systems do.

The abstraction supplied by circuit computation languages such as AFL-1 are very
different forrr those found in conventional languages. Because of this, the approach the
programmer takes toward achieving a certain functionality will differ substantially. One
important abstraction of AFL-1 is the mutually exclusive group (ME-group). Several
flavors of this group were discussed and an efficient implementation of the groups was

given. CIS and AFPLAN both use such groups and it is likely that most systems could

make significant use of them.

To understand which structures are cheap and which are expensive, one has to
study the properties of the simulators used to run the networks. A discussion of the

AFL-1 network simulator was given. Two important aspects of simulating networks
were discussed. These were that links are at least as expensive as nodes, and that it is

important to collect nodes into local groups.
This thesis introduces the idea of hierarchical programming languages for circuit

like models of computation. Much work needs to be done before the potential of such
languages is well understood.

124

Bibliography

Ackley, D.H., Hinton, G.E., Sejnowski, T.J., "A Learning Algorithm for boltzmann

Machines", Cognitive Science, 1985, 9, 147-169.

Agre, P.E., "Routines", Memo 828, MIT AI Laboratory, Many 1985.

Ballard, D.H., Hayes, P.J., "Parallel Logical Inference", Conference of the Cognitive

Science Society, 1984, Boulder, CO, 114-123.

Batali, J., Hartheimer, A., "The Design Procedure Language Manual", Memo 598,
MIT Al Laboratory, September 1980.

Batcher, K.E., "STARAN Parallel Processor System Hardware", Proc. AFIPS-NCC,
1974, vol.43, 405-410.

Batcher, K.E., "The Flip Network of Staran", Proc. Int'l. Conf. on Parallel Processing,

1976, Detroit, Mich., 65-71.

Batcher, K.E., "Design of a Massively Parallel Processor", IEEE Trans. on Comp.,

1980, C-29, 9, 836-840.

Bawden, A., Agre, P.E., "What a Parallel Programming Language has to Let You Say",
Memo 796, MIT AI Laboratory, September 1984.

Bawden, A., "A programming Language for Massively Parallel Computers", MS Thesis,

Dept. of Electrical Engineering and Computer Science, MIT, October 1984.

Bhatt, S.N., Leighton, F.T., "A Framework for Solving VLSI Graph Layout Problems"

Journal of Computer and System Sciences, April 1984, Vol. 28, No.2, 300-343.

Bouknight, W.J., Denenberg, S.A., McIntyre, D.E., Randall, J.M., Sameh, A.H., Slot-
nick, D.L., "The Illiac IV System", Proc IEEE, April 1972, vol. 60, no. 4, 369-388.

Chapman, D., "Planning for Conjunctive Goals", TR-SC2, MIT AI Laboratory, Novem-

ber 1985.

Christman, D.P., "Programming the Connection Machine", MS Thesis, Dept. of Elec-

trical Engineering and Computer Science, MIT, January 1984.

Collins, A.M., Quillian, M.R., "Experiments on Semantic Memory and Language Com-

125

prehension", in L.W. Greg (Ed.), Cognition in Learning and Memory, New York,

Wiley, 1972._

Collins. A.M., Loftus, E.F., "A Spreading Activation Theory of Semantic Processing",

Psychological Review, 1975, 82, 407-428.

Cottrell, G.W., Small, S.L., "A Connectionist Scheme for Modeling Word Sense Dis-

ambiguation", Cognition and Brain Theory, 1983, 6, 89-120.

Cottrell, G.W., "Connectionist Parsing", Conference of the Cognitive Science Society,
1985, Irvine, CA, 201-211.

Cottrell, G.W., "A Connectionist Approach to Word Sense Disambiguation", TR 154,

Computer Science Department, University of Rochester, May 1985.

Crowther, W., Goodhue, J., Starr, E., Thomas. R., Milliken, W., Bleckadar, T., "Per-

formance Measurements on a 128-Node Butterfly Parallel Processor", Proc. Int'l.

Conf. Parallel Processing, August 1985, 531-540.

Davis, A.L., Robison, S.V., "The Architecture of the FAIM-1 Symbolic Multiprocessing

System", Proc IJCAI, August 1985, Los Angeles, 32-38.

Davis, Randall, Buchanan, B., Shortliffe, E., "Production Rules as a Representation

for Knowledge-Based Consultation Program", Artificial Intelligence, 1977, 8, 15-45.

Davis, Randall, "Meta-Rules: Reasoning about Control", Artificial Intelligence, 1980,

15, 179-222.

Davis, Ronald, Thomas, D., "Systolic Array Chip Matches the Pace of High-Speed

Processing" Electronic Design, October 1984.

Denneau, M.M., "The Yorktown Simulation Engine", Proc. of the 19th Design Au-

tomation Conf., June 1982, 55-59.

Deutsch, J.T., Newton, A.R., "MSPLICE: A Multiprocessor-Based Circuit Simulator",

Proc. Int'l Conf. on Parallel Processing, August 1984, 207-214.

Douglass, R.J., "A Qualitative Assessment of Parallelism in Expert Systems", IEEE

Software, May 1985, 70-81.

Doyle, J., "A Truth Maintenance System", Artificial Intelligence, 1979, Vol. 12, No. 3.

Duda, R.O., Hart, P.E., and Nilson, N.J., "Subjective Bayesian Methods for Rule-Based

Inference Systems", Proc. National Computer Conf, 1976, 45, 1075-1082.

126

Etherington, D.W., Reiter, R., "On Inheritance Hierarchies With Exceptions", Proc.

AAAI, August 1983, Washington D.C., 104-108.

Fahlman, S.E., NETL: A System For Representing and Using Real. World Knowledge,

Cambridge, Mass., MIT Press, 1979.

Fahlman, S.E., Touretzky, D.S., van Roggen, W., "Cancellation in a Parallel Semantic

Network", Proc. IJCAI, August 1981, Vancouver, 257-263.

Fahlman, S.E., "Three Flavors of Parallelism", Proc. National Conference of the

Canadian Society for Computational Studies of Intelligence, May 1982, Saskatoon,
Saskatchewan, 230-235.

Fahlman, S.E., Hinton G.E., Sejnowski, T.J., "Massively Parallel Architectures for AI:
NETL, THISTLE and Boltzmann Machines", Proc. AAAI, August 1983, Washing-

ton D.C, 109-113.

Farmwald, P.M., "The S-1 Mark IIA Supercomputer", in J.S. Kowalik (Ed.), High-
Speed Computation, New York, Springer-Verlag, 1984.

Feldman, J.A., "A Connectionist Model of Visual Memory", in G.E. Hinton and J.A.
Anderson (Eds.), Parallel Models of Associative Memory, Hillsdale, NJ, Erlbaum,

1981.

Feldman, J.A., "Dynamic Connections in Neural Networks", Biological Cybernetics,

1982, 46, 27-39.

Feldman, J.A., Ballard, D.H., "Connectionist Models and Their Properties", Cognitive

Science, 1982, 6, 205-254.

Feldman, J.A., Shastri, L., "Evidential Inference in Activation Networks", Conference
of the Cognitive Science Society, June 1984, Boulder, CA, 156-160.

Feldman, J.A., "Four Frames Suffice: A Provisional Model of Vision and Space", The

Behavioral and Brain Sciences, 1985, 8, 265-289.

Fikes, R.E., Hart, P.E., Nilsson, N.J., "STRIPS: A New Approach to the Application
of Theorem Proving to Problem Solving", Artificial Intelligence, 1971, 2, 198-208.

Fitch, F., "New Bounds for Parallel Prefix Circuits", Oroc. of the 15th Annual ACM
Symposium on Theory of Computing, May 1983, 100-109.

Forgy, C.L., "The OPS5 User's Manual", Technical Report, Carnegie-Mellon Univer-

sity, Department of Computer Science, 1981.

127

10 ' "1 I1" l

Forgy, C., A. Gupta, A. Newell, R. Wedig, "Initial Assessment of Architectures for
Production Systems", Proc. AAAI, August 1984, Austin, TX., 116-120.

Fox, M.S., Lowenfeld, S., Kleinosky, P., "Techniques for Sensor-Based Diagnostics"
Proc. IJCAI, August 1983, Karlsruhe W. Germany, 158-163.

Gaschnig, J., "Prospector: An Expert System for Mineral Exploration", in Michie

(Ed.), Introductory Readings in Expert Systems, New York, Gordon and Breach,

1982.

Golberg, A., Robson, D., Smalltalk-80 Reading, Mass., Addison-Wesley, 1983.

Gottlieb, A., Grishman, R., Kruskal, C.P., McAuliffe, K.P., Rudolph, L., Snir, M., "The
NYU Ultracomputer - Designing a MIMD, Shared-Memory Parallel Machine", IEEE

Trans. on Computers, 1983, C-32, 175-189.

Greenberg, R.I., Leiserson, C.E., "Randomized Routing on Fat-Trees", Forthcoming.

Gupta, A., Forgy, C., Newell, A., Wedig, R., "Parallel Algorithms and Architectures
for Rule-Based Systems", Proc. Int'l. Symposium on Comp. Arch., June 1986.

Hayes, J.P.. "A Unified Switching Theory with Applications to VLSI Design", Proc.
IEEE, 1982, 70, 10, 1140-1151.

Hewitt, C., "Procedural Embedding of Knowledge in Planner", Proc. IJCAI, 1971,

167-182.

Hewitt, C., Lieberman, H., "Design Issues in Parallel Architectures for Artificial Intel-

ligence", Memo 750, MIT Al Laboratory, November 1983.

Hillis, W. D., "The Connection Machine (Computer Architecture for the New Wave)",

Memo 646, MIT Al Laboratory, September 1981.

Hillis, W. D., The Connection Machine, Cambridge, Mass., MIT Press, 1985.

Hinton, G.E., Relazation and its Role in Vision, University of Edinburgh: Doctoral

Dissertation, December 1977.

Hinton, G.E., "Shape Representation in Parallel Systems", Proc. IJCAI, August 1981,
Vancouver, 1088-1096.

Hinton, G.E., "Implementing Semantic Networks in Parallel", in G.E. Hinton and J.A.

Anderson (Ed.), Parallel Models of Associative Memory, Hillsdale, NJ: Erlbaum,

1981.

128

Hinton. G.E., Sejnowski, T.J., "Analyzing Cooperative Computation". Proc. of the

Fifth Annual Conference of the Cognitive Science Society, May 1983, Rochester NY,

Session 7.

Hinton, G.E., Lang, K.J., "Shape Recognition and Illusory Conjunctions", Proc. IJ-

CAI, 1985, Los Angeles, 252-259.

Hopfield, J.J., "Neural networks and physical systems with emergent collective compu-

tational abilities", Proc. National Academy of Sciences USA, 1982, 79, 2554-2558.

Kirpatrick, S., Gelatt, C.D., Vecchi, M.P., "Optimization by Simulated Annealing",

Science, 1983, 220, 671-680.

Koch, C., Ullman, S., "Selecting One Among the Many: A Simple Network Implement-

ing Shifts in Selective Visual Attention", Memo 770, MIT Al Laboratory, January

1984.

Kruskal, C.P., Rudolph, L., Snir, M., "The Power of Parallel Prefix", Proc. Int'l.

Conference on Parallel Processing, August 1985, 180-185.

Kung, H.T., "Systolic Algorithms for the CMU Warp Processor", Proc. 7th Int'l Conf.

on Pat. Recognition, July-August 1984, 570-577.

Lasser, C., "The *Lisp Manual", Thinking Machines Corporation, Cambridge, Mass.,

1986.

Leiserson, C.E., "Area-Efficient Layouts (for VLSI)", 21st Annual IEEE Symp. on

Foundations of Computer Science, 1980.

Leiserson, C.E., "Fat-Trees: Universal Networks for Hardware-Efficient Supercomput-

ing", IEEE Transactions on Computers, October 1985, c-34, 10, 892-901.

Lenat, D.B., "The Ubiquity of Discovery", Artificial Intelligence, 1978, 9, 257-285.

Lewis, P.M., Coates, C.L., Threshold Logic, New York, Wiley, 1967.

Lipton, R.J., Sedgewick, R., "Lower Bounds for VLSI", Proc. STOC, May 1981,

Milwaukee, 300-3007.

McCulloch, W.S., Pitts, W., "A Logical Calculus of the Ideas Imminent in Nervous

Activity", Bulletin of Mathematical Biophysics, Vol. 5, 1943.

McDermott, J., "RI: an Expert in the Computer Systems Domain", Proc. AAAI,

August 1980, Stanford University, 269-271.

129

Miller. R.A., Pople, H.E., Myers, J.D., "Internist-l. An Experimental Computer-Based

Diagnostic Consultant for General Internal Medicine", in W. Clancy and E. Shortliffe

(Ed.), Readings in Medical Artificial Intelligence, Reading, Mass., Addison-Wesley,

1984.

Minsky, M., "K-lines: A Theory of Memory", Cognitive Science, 1980, 4, 117-133.

Minsky, M., "Plain Talk About Neurodevelopmental Epistemology", Proc. IJCAI,

August 1977, Cambridge Mass., 1083-1092.

Minsky, M., Papert, S., Perceptrons, Cambridge, Mass., MIT Press, 1969.

Minsky, M., Society of Minds, Forthcoming.

Murakami, K., Kakuta, T., Onai, R., "Architectures and Hardware Systems: Parallel

Inference Machine and Knowledge Base Machine", Proc. Int'l Conf. Fifth Genera-

tion Computer Systems, 1984, Tokyo, 18-36.

Newell, A., Simon, H.A., Human Problem Solving, Englewood Cliffs, NJ: Prentice Hall,

1972.

Oflazer, K., "Partitioning in Parallel Processing of Production Systems", Proc. Int'l

Conf. Parallel Processing, August 1984, 92-100.

Quillian, M.R., "Semantic Memory", in Minsky (ed.), Semantic Information Process-

ing, Cambridge, Mass., MIT Press, 1968.

Reggia, J.A., "Virtual Lateral Inhibition In Parallel Activation Models of Associative

Memory", Proc. IJCAI, August 1985, Los Angeles, 244-248.

Rosenblatt, F., "A Comparison of Several Perceptron Models", Proceedings of a Sym-

posium on Mechanization of Thought Processes, 1958.

Rosenblatt, F., Principals of Neurodynamics: Perceptrons and the Theory of Brain

Mechanics. Washington D.C., Spartan, 1961.

Rumelhart, D.E., Zipser, D., "Feature Discovery by Competitive Learning", Cognitive

A Science, 1985, 9, 75-112.

Rumelhart, D.E., McClelland, J.L., Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, Volume 1: Foundations, MIT Press, Cambridge Mass.,

1986.

Sacerdoti, E.D., "The Nonlinear Nature of Plans", Advance Papers of the 4th IJCAI,

130

August 1975, Tbilisi, USSR, 206-214.

Schwartz, J.T., "Ultracomputers", ACM Transactions on Programming Languages and

Systems, Vol. 2, No. 4, October 1980, pages 484-521.

Selman, B., Hirst, G., "A Rule-Based Connectionist Parsing System", Conference of

the Cognitive Science Society, August 1985, Irvine, CA, 212-221.

Shastri, L., Feldman, J.A., "Evidential Reasoning in Semantic Networks: A Formal

Theory", Proc. IJCAI, August 1985, Los Angeles, 465-474.

Shastri, L., "Evidential Reasoning in Semantic Networks: A Formal Theory and its

Parallel Implementation", TR 166, Computer Science Department, University of

Rochester, September 1985.

Shaw, D.E., "NON-VON: A Parallel Machine Architecture for Knowledge-Based Infor-

mation Processing", Proc. IJCAI, August 1981, Vancouver, 961-963.

Shaw, D.E., "Organization and Operation of a Massively Parallel Machine", in Guy

Rabbat (ed.), Computers and Technology, Elsevier-North Holland, 1985.

Shortliffe, E. H., Buchanan, B. G., "A Model of Inexact Reasoning in Medicine", Math.
Biosci., 1975, 23, 351-379.

Siewiorek, D.P., Kini, V., Mashburn, H., Joobbani, R., "A Case Study of C.mmp,

Cm* and C.vmp, Part II: Predicting and Calibrating Reliability of Multiprocessor

Systems", Proc. IEEE, 1978, vol. 66, no. 10, 1,2000-1,220.

Small, S., Cottrell, G., Shastri, L., "Toward Connectionist Parsing", Proc. AAAI,
August 1982, Pittsburgh, PA, 247-250.

Smith, B.J., "Latency and HEP", in J.S. Kowalik (Ed.), High-Speed Computation, New

York, Springer-Verlag, 1984.

Steele, G.L. Jr., "The Definition and Implementation of a Computer Programming

Language Based on Constraints", AI-TR 595, MIT AI Laboratory, August 1980.

Steele, G.L. Jr., Commoni Lisp, Burlington, Mass., Digital Press, 1984.

Stefik, M., "Planning with Constraints (MOLGEN: Part 1)", Artificial Intelligence,

1981, 16, 111-140.

Stolfo, S. J., Miranker, D., Shaw, D. E., "Architecture and Applications of DADO:

A Large-Scale Parallel Computer For Artificial Intelligence", Proc. IJCAI, August

131

1983, Karlsruhe W. Germany. 850-854.

Sussman, G.J.L "A Computational Model of Skill Acquisition", AI-TR 297, MIT Al

Laboratory, August 1973.

Sussman, G.J., Steele, G.L. Jr., "Constraints - A Language for Expressing Almost-

Hierarchical Descriptions", Artificial Intelligence, 1980, 14, 1-39.

Swartout, William R., "Explaining and Justifying Expert Consulting Programs", Proc

IJCAI, August 1981, Vancouver, 815-823.

Symbolics Inc., "Reference Guide to Symbolics Lisp", Cambridge, Mass., 1985.

Symbolics Inc., "User's Guide to Symbolics Computers" Cambridge, Mass., 1985.

Thompson, C.D., "Area-Time Complexity for VLSI", Proc. STOC, May 1979, Atlanta,

Georgia, 81-88.

Thurber, K.J., Large Scale Computer Architecture - Parallel and Associative Processors,

N.J., Hayden Book Co., 1976.

Touretzkv. D.S., "Symbols Among the Neurons: Details of a Connectionist Inference

* Arc.itecture", Proc. IJCAI, August 1985, Los Angeles, 238-243.

Treisman, A.M., Shmidt, H., "Illusory Conjunctions in the Perception of Objects",

Cognitive Psychology, 1982, 14, 107-141.

Uttley, A.M., "Conditional Probability Computing in a Nervous System", Second Sym-

posium on Self Organizing Systems, 1962.

Valiant, L.G., "Universality Considerations in VLSI Circuits", IEEE Transactions on

Computers, February 1981, c-30, 2, 135-140.

Vesonder, G.T., Stolfo, S.J., Zielinski, J.E., Miller, F.D., Copp, D.H., "ACE: an Expert

System for Telephone Cable Maintenance", Proc. IJCAI, August 1983, Karlsruhe

W. Germany, 116-121.

Waltz, D.L., Pollack, J.B., "Massively Parallel Parsing: A Strongly Interactive Model

of Natural Language Interpretation", Cognitive Science, 1985, 9, 51-74.

Woods, W.A., "Research in Natural Language Understanding, Progress Report No.

2", Report No. 3797, Bolt Beranek and Newman Inc., Cambridge, MA, April 1978.

Zadeh, L.A., "Fuzzy Sets", Information and Control, 1965, 8, 338-353.

132

, 4Ib

Ecx

/7?7,_ 3 <-i

